|
""" Adafactor Optimizer |
|
|
|
Lifted from https://github.com/pytorch/fairseq/blob/master/fairseq/optim/adafactor.py |
|
|
|
Original header/copyright below. |
|
|
|
""" |
|
|
|
|
|
|
|
|
|
import torch |
|
import math |
|
|
|
|
|
class Adafactor(torch.optim.Optimizer): |
|
"""Implements Adafactor algorithm. |
|
This implementation is based on: `Adafactor: Adaptive Learning Rates with Sublinear Memory Cost` |
|
(see https://arxiv.org/abs/1804.04235) |
|
|
|
Note that this optimizer internally adjusts the learning rate depending on the |
|
*scale_parameter*, *relative_step* and *warmup_init* options. |
|
|
|
To use a manual (external) learning rate schedule you should set `scale_parameter=False` and |
|
`relative_step=False`. |
|
|
|
Arguments: |
|
params (iterable): iterable of parameters to optimize or dicts defining parameter groups |
|
lr (float, optional): external learning rate (default: None) |
|
eps (tuple[float, float]): regularization constants for square gradient |
|
and parameter scale respectively (default: (1e-30, 1e-3)) |
|
clip_threshold (float): threshold of root mean square of final gradient update (default: 1.0) |
|
decay_rate (float): coefficient used to compute running averages of square gradient (default: -0.8) |
|
beta1 (float): coefficient used for computing running averages of gradient (default: None) |
|
weight_decay (float, optional): weight decay (L2 penalty) (default: 0) |
|
scale_parameter (bool): if True, learning rate is scaled by root mean square of parameter (default: True) |
|
warmup_init (bool): time-dependent learning rate computation depends on |
|
whether warm-up initialization is being used (default: False) |
|
""" |
|
|
|
def __init__(self, params, lr=None, eps=1e-30, eps_scale=1e-3, clip_threshold=1.0, |
|
decay_rate=-0.8, betas=None, weight_decay=0.0, scale_parameter=True, warmup_init=False): |
|
relative_step = not lr |
|
if warmup_init and not relative_step: |
|
raise ValueError('warmup_init requires relative_step=True') |
|
|
|
beta1 = None if betas is None else betas[0] |
|
defaults = dict(lr=lr, eps=eps, eps_scale=eps_scale, clip_threshold=clip_threshold, decay_rate=decay_rate, |
|
beta1=beta1, weight_decay=weight_decay, scale_parameter=scale_parameter, |
|
relative_step=relative_step, warmup_init=warmup_init) |
|
super(Adafactor, self).__init__(params, defaults) |
|
|
|
@staticmethod |
|
def _get_lr(param_group, param_state): |
|
if param_group['relative_step']: |
|
min_step = 1e-6 * param_state['step'] if param_group['warmup_init'] else 1e-2 |
|
lr_t = min(min_step, 1.0 / math.sqrt(param_state['step'])) |
|
param_scale = 1.0 |
|
if param_group['scale_parameter']: |
|
param_scale = max(param_group['eps_scale'], param_state['RMS']) |
|
param_group['lr'] = lr_t * param_scale |
|
return param_group['lr'] |
|
|
|
@staticmethod |
|
def _get_options(param_group, param_shape): |
|
factored = len(param_shape) >= 2 |
|
use_first_moment = param_group['beta1'] is not None |
|
return factored, use_first_moment |
|
|
|
@staticmethod |
|
def _rms(tensor): |
|
return tensor.norm(2) / (tensor.numel() ** 0.5) |
|
|
|
def _approx_sq_grad(self, exp_avg_sq_row, exp_avg_sq_col): |
|
r_factor = (exp_avg_sq_row / exp_avg_sq_row.mean(dim=-1, keepdim=True)).rsqrt_().unsqueeze(-1) |
|
c_factor = exp_avg_sq_col.unsqueeze(-2).rsqrt() |
|
return torch.mul(r_factor, c_factor) |
|
|
|
@torch.no_grad() |
|
def step(self, closure=None): |
|
"""Performs a single optimization step. |
|
Arguments: |
|
closure (callable, optional): A closure that reevaluates the model and returns the loss. |
|
""" |
|
loss = None |
|
if closure is not None: |
|
with torch.enable_grad(): |
|
loss = closure() |
|
|
|
for group in self.param_groups: |
|
for p in group['params']: |
|
if p.grad is None: |
|
continue |
|
grad = p.grad |
|
if grad.dtype in {torch.float16, torch.bfloat16}: |
|
grad = grad.float() |
|
if grad.is_sparse: |
|
raise RuntimeError('Adafactor does not support sparse gradients.') |
|
|
|
state = self.state[p] |
|
|
|
factored, use_first_moment = self._get_options(group, grad.shape) |
|
|
|
if len(state) == 0: |
|
state['step'] = 0 |
|
|
|
if use_first_moment: |
|
|
|
state['exp_avg'] = torch.zeros_like(grad) |
|
if factored: |
|
state['exp_avg_sq_row'] = torch.zeros(grad.shape[:-1]).to(grad) |
|
state['exp_avg_sq_col'] = torch.zeros(grad.shape[:-2] + grad.shape[-1:]).to(grad) |
|
else: |
|
state['exp_avg_sq'] = torch.zeros_like(grad) |
|
|
|
state['RMS'] = 0 |
|
else: |
|
if use_first_moment: |
|
state['exp_avg'] = state['exp_avg'].to(grad) |
|
if factored: |
|
state['exp_avg_sq_row'] = state['exp_avg_sq_row'].to(grad) |
|
state['exp_avg_sq_col'] = state['exp_avg_sq_col'].to(grad) |
|
else: |
|
state['exp_avg_sq'] = state['exp_avg_sq'].to(grad) |
|
|
|
p_fp32 = p |
|
if p.dtype in {torch.float16, torch.bfloat16}: |
|
p_fp32 = p_fp32.float() |
|
|
|
state['step'] += 1 |
|
state['RMS'] = self._rms(p_fp32) |
|
lr_t = self._get_lr(group, state) |
|
|
|
beta2t = 1.0 - math.pow(state['step'], group['decay_rate']) |
|
update = grad ** 2 + group['eps'] |
|
if factored: |
|
exp_avg_sq_row = state['exp_avg_sq_row'] |
|
exp_avg_sq_col = state['exp_avg_sq_col'] |
|
|
|
exp_avg_sq_row.mul_(beta2t).add_(update.mean(dim=-1), alpha=1.0 - beta2t) |
|
exp_avg_sq_col.mul_(beta2t).add_(update.mean(dim=-2), alpha=1.0 - beta2t) |
|
|
|
|
|
update = self._approx_sq_grad(exp_avg_sq_row, exp_avg_sq_col) |
|
update.mul_(grad) |
|
else: |
|
exp_avg_sq = state['exp_avg_sq'] |
|
|
|
exp_avg_sq.mul_(beta2t).add_(update, alpha=1.0 - beta2t) |
|
update = exp_avg_sq.rsqrt().mul_(grad) |
|
|
|
update.div_((self._rms(update) / group['clip_threshold']).clamp_(min=1.0)) |
|
update.mul_(lr_t) |
|
|
|
if use_first_moment: |
|
exp_avg = state['exp_avg'] |
|
exp_avg.mul_(group['beta1']).add_(update, alpha=1 - group['beta1']) |
|
update = exp_avg |
|
|
|
if group['weight_decay'] != 0: |
|
p_fp32.add_(p_fp32, alpha=-group['weight_decay'] * lr_t) |
|
|
|
p_fp32.add_(-update) |
|
if p.dtype in {torch.float16, torch.bfloat16}: |
|
p.copy_(p_fp32) |
|
|
|
return loss |
|
|