trocr-base / README.md
personalizedrefrigerator's picture
End of training
63176cb verified
metadata
library_name: transformers
language:
  - fr
base_model: microsoft/trocr-base-handwritten
tags:
  - generated_from_trainer
metrics:
  - wer
model-index:
  - name: TrOCR Small (Finetuned on French)
    results: []

TrOCR Small (Finetuned on French)

This model is a fine-tuned version of microsoft/trocr-base-handwritten on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0871
  • Model Preparation Time: 0.0066
  • Cer: 0.0134
  • Wer: 0.0350
  • Ratio: 97.4287

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • training_steps: 12000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Model Preparation Time Cer Wer Ratio
1.359 0.0333 400 1.0638 0.0066 0.1715 0.3841 89.6898
1.1123 0.0667 800 1.2707 0.0066 0.1715 0.4437 89.7413
0.872 0.1 1200 0.9230 0.0066 0.1305 0.3576 91.0810
0.6831 0.1333 1600 0.7046 0.0066 0.1195 0.2848 92.7617
0.6659 0.1667 2000 0.5952 0.0066 0.0841 0.2450 94.7742
0.612 0.2 2400 0.5830 0.0066 0.1029 0.2517 93.2609
0.4865 0.2333 2800 0.5312 0.0066 0.0973 0.2318 94.4422
0.4922 0.2667 3200 0.5842 0.0066 0.0918 0.1987 95.5454
0.4152 0.3 3600 0.4215 0.0066 0.0664 0.1921 95.9747
0.3648 0.3333 4000 0.4264 0.0066 0.0608 0.1722 96.4262
0.3272 0.3667 4400 0.5209 0.0066 0.0653 0.1921 95.3742
0.3172 0.4 4800 0.4229 0.0066 0.0531 0.1788 95.8131
0.2672 0.4333 5200 0.4071 0.0066 0.0586 0.1921 96.0787
0.2747 0.4667 5600 0.3494 0.0066 0.0586 0.1656 96.2269
0.2576 0.5 6000 0.3687 0.0066 0.0642 0.1523 96.6562
0.2138 0.5333 6400 0.3945 0.0066 0.0564 0.1391 96.8775
0.2197 0.5667 6800 0.3698 0.0066 0.0420 0.1391 97.3293
0.1908 1.0141 7200 0.3288 0.0066 0.0420 0.1126 97.6500
0.145 1.0474 7600 0.2655 0.0066 0.0332 0.0993 97.6602
0.1347 1.0808 8000 0.2659 0.0066 0.0365 0.1258 97.2893
0.1092 1.1141 8400 0.2496 0.0066 0.0343 0.1192 97.6671
0.111 1.1474 8800 0.2205 0.0066 0.0221 0.0861 98.4693
0.1033 1.1807 9200 0.2226 0.0066 0.0254 0.0927 98.1761
0.0919 1.2141 9600 0.1787 0.0066 0.0210 0.0728 98.6440
0.074 1.2474 10000 0.1756 0.0066 0.0188 0.0464 99.3030
0.0833 1.2808 10400 0.1830 0.0066 0.0232 0.0728 98.8762
0.057 1.3141 10800 0.1675 0.0066 0.0133 0.0530 99.3276
0.038 1.3474 11200 0.1709 0.0066 0.0188 0.0596 98.9563
0.0409 1.3807 11600 0.1400 0.0066 0.0133 0.0530 99.2905
0.0404 1.4141 12000 0.1423 0.0066 0.0122 0.0464 99.2598

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.5.1+cu121
  • Tokenizers 0.20.3