|
--- |
|
license: apache-2.0 |
|
base_model: Praveen76/FinetunedT5Model |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: T5Model_for_Ecommerce |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# T5Model_for_Ecommerce |
|
|
|
This model is a fine-tuned version of [Praveen76/FinetunedT5Model](https://huggingface.co/Praveen76/FinetunedT5Model) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.3980 |
|
- Rouge1: 0.002 |
|
- Rouge2: 0.0002 |
|
- Rougel: 0.0019 |
|
- Rougelsum: 0.0019 |
|
- Gen Len: 18.6364 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 15 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| |
|
| No log | 1.0 | 27 | 4.9361 | 0.0004 | 0.0001 | 0.0004 | 0.0004 | 17.933 | |
|
| No log | 2.0 | 54 | 3.9155 | 0.0006 | 0.0001 | 0.0006 | 0.0006 | 18.1435 | |
|
| No log | 3.0 | 81 | 3.2005 | 0.0004 | 0.0001 | 0.0004 | 0.0004 | 17.1292 | |
|
| No log | 4.0 | 108 | 2.6800 | 0.0005 | 0.0001 | 0.0005 | 0.0005 | 17.9474 | |
|
| No log | 5.0 | 135 | 2.3165 | 0.0018 | 0.0001 | 0.0018 | 0.0018 | 18.1627 | |
|
| No log | 6.0 | 162 | 2.0678 | 0.0021 | 0.0001 | 0.0021 | 0.0021 | 18.4354 | |
|
| No log | 7.0 | 189 | 1.8971 | 0.0016 | 0.0 | 0.0016 | 0.0016 | 18.7512 | |
|
| No log | 8.0 | 216 | 1.7619 | 0.0017 | 0.0 | 0.0017 | 0.0017 | 18.8086 | |
|
| No log | 9.0 | 243 | 1.6513 | 0.0015 | 0.0 | 0.0015 | 0.0015 | 18.7416 | |
|
| No log | 10.0 | 270 | 1.5641 | 0.001 | 0.0 | 0.0011 | 0.001 | 18.8182 | |
|
| No log | 11.0 | 297 | 1.4990 | 0.0011 | 0.0 | 0.0011 | 0.0011 | 18.7081 | |
|
| No log | 12.0 | 324 | 1.4543 | 0.0018 | 0.0001 | 0.0017 | 0.0016 | 18.6507 | |
|
| No log | 13.0 | 351 | 1.4226 | 0.0014 | 0.0 | 0.0015 | 0.0015 | 18.6316 | |
|
| No log | 14.0 | 378 | 1.4043 | 0.0019 | 0.0002 | 0.0018 | 0.0018 | 18.6411 | |
|
| No log | 15.0 | 405 | 1.3980 | 0.002 | 0.0002 | 0.0019 | 0.0019 | 18.6364 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.0 |
|
- Pytorch 2.4.0 |
|
- Datasets 2.21.0 |
|
- Tokenizers 0.19.1 |
|
|