bart-base-samsum / README.md
philschmid's picture
philschmid HF staff
Add evaluation results on samsum dataset (#1)
807745b
|
raw
history blame
3.77 kB
metadata
language: en
tags:
  - sagemaker
  - bart
  - summarization
license: apache-2.0
datasets:
  - samsum
widget:
  - text: >-
      Jeff: Can I train a 🤗 Transformers model on Amazon SageMaker? 

      Philipp: Sure you can use the new Hugging Face Deep Learning Container. 

      Jeff: ok.

      Jeff: and how can I get started? 

      Jeff: where can I find documentation? 

      Philipp: ok, ok you can find everything here.
      https://huggingface.co/blog/the-partnership-amazon-sagemaker-and-hugging-face  
model-index:
  - name: philschmid/bart-base-samsum
    results:
      - task:
          type: summarization
          name: Summarization
        dataset:
          name: samsum
          type: samsum
          config: samsum
          split: test
        metrics:
          - name: ROUGE-1
            type: rouge
            value: 45.3438
            verified: true
          - name: ROUGE-2
            type: rouge
            value: 21.6953
            verified: true
          - name: ROUGE-L
            type: rouge
            value: 38.1365
            verified: true
          - name: ROUGE-LSUM
            type: rouge
            value: 41.5913
            verified: true
          - name: loss
            type: loss
            value: 1.5832244157791138
            verified: true
          - name: gen_len
            type: gen_len
            value: 17.9927
            verified: true

bart-base-samsum

This model was trained using Amazon SageMaker and the new Hugging Face Deep Learning container.

You can find the notebook here and the referring blog post here.

For more information look at:

Hyperparameters

{
    "dataset_name": "samsum",
    "do_eval": true,
    "do_train": true,
    "fp16": true,
    "learning_rate": 5e-05,
    "model_name_or_path": "facebook/bart-base",
    "num_train_epochs": 3,
    "output_dir": "/opt/ml/model",
    "per_device_eval_batch_size": 8,
    "per_device_train_batch_size": 8,
    "seed": 7
}

Train results

key value
epoch 3
init_mem_cpu_alloc_delta 180190
init_mem_cpu_peaked_delta 18282
init_mem_gpu_alloc_delta 558658048
init_mem_gpu_peaked_delta 0
train_mem_cpu_alloc_delta 6658519
train_mem_cpu_peaked_delta 642937
train_mem_gpu_alloc_delta 2267624448
train_mem_gpu_peaked_delta 10355728896
train_runtime 98.4931
train_samples 14732
train_samples_per_second 3.533

Eval results

key value
epoch 3
eval_loss 1.5356481075286865
eval_mem_cpu_alloc_delta 659047
eval_mem_cpu_peaked_delta 18254
eval_mem_gpu_alloc_delta 0
eval_mem_gpu_peaked_delta 300285440
eval_runtime 0.3116
eval_samples 818
eval_samples_per_second 2625.337

Usage

from transformers import pipeline
summarizer = pipeline("summarization", model="philschmid/bart-base-samsum")

conversation = '''Jeff: Can I train a 🤗 Transformers model on Amazon SageMaker? 
Philipp: Sure you can use the new Hugging Face Deep Learning Container. 
Jeff: ok.
Jeff: and how can I get started? 
Jeff: where can I find documentation? 
Philipp: ok, ok you can find everything here. https://huggingface.co/blog/the-partnership-amazon-sagemaker-and-hugging-face                                           
'''
nlp(conversation)