Phobert_CITA
This model is a fine-tuned version of vinai/phobert-base-v2 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.6605
- Accuracy: 0.781
- F1: 0.7804
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine_with_restarts
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
0.5677 | 1.0 | 250 | 0.5024 | 0.7605 | 0.7606 |
0.4768 | 2.0 | 500 | 0.4576 | 0.7755 | 0.7756 |
0.4174 | 3.0 | 750 | 0.4732 | 0.7785 | 0.7786 |
0.3587 | 4.0 | 1000 | 0.4897 | 0.784 | 0.7841 |
0.2966 | 5.0 | 1250 | 0.5188 | 0.779 | 0.7787 |
0.2503 | 6.0 | 1500 | 0.5646 | 0.783 | 0.7827 |
0.2206 | 7.0 | 1750 | 0.6029 | 0.787 | 0.7858 |
0.1902 | 8.0 | 2000 | 0.6403 | 0.783 | 0.7820 |
0.1702 | 9.0 | 2250 | 0.6574 | 0.7825 | 0.7820 |
0.1669 | 10.0 | 2500 | 0.6605 | 0.781 | 0.7804 |
Framework versions
- Transformers 4.48.0
- Pytorch 2.1.2
- Datasets 2.19.1
- Tokenizers 0.21.0
- Downloads last month
- 3
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for phunganhsang/Phobert_CITA
Base model
vinai/phobert-base-v2