metadata
license: apache-2.0
base_model: microsoft/resnet-50
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: resnet-50-finetuned-cifar10
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.5076
resnet-50-finetuned-cifar10
This model is a fine-tuned version of microsoft/resnet-50 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 1.9060
- Accuracy: 0.5076
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
2.3058 | 0.03 | 10 | 2.3106 | 0.0794 |
2.3033 | 0.06 | 20 | 2.3026 | 0.0892 |
2.3012 | 0.09 | 30 | 2.2971 | 0.1042 |
2.2914 | 0.11 | 40 | 2.2890 | 0.1254 |
2.2869 | 0.14 | 50 | 2.2816 | 0.16 |
2.2785 | 0.17 | 60 | 2.2700 | 0.1902 |
2.2712 | 0.2 | 70 | 2.2602 | 0.2354 |
2.2619 | 0.23 | 80 | 2.2501 | 0.2688 |
2.2509 | 0.26 | 90 | 2.2383 | 0.3022 |
2.2382 | 0.28 | 100 | 2.2229 | 0.3268 |
2.2255 | 0.31 | 110 | 2.2084 | 0.353 |
2.2164 | 0.34 | 120 | 2.1939 | 0.3608 |
2.2028 | 0.37 | 130 | 2.1829 | 0.3668 |
2.1977 | 0.4 | 140 | 2.1646 | 0.401 |
2.1844 | 0.43 | 150 | 2.1441 | 0.4244 |
2.1689 | 0.45 | 160 | 2.1323 | 0.437 |
2.1555 | 0.48 | 170 | 2.1159 | 0.4462 |
2.1448 | 0.51 | 180 | 2.0992 | 0.45 |
2.1313 | 0.54 | 190 | 2.0810 | 0.4642 |
2.1189 | 0.57 | 200 | 2.0589 | 0.4708 |
2.1111 | 0.6 | 210 | 2.0430 | 0.4828 |
2.0905 | 0.63 | 220 | 2.0288 | 0.4938 |
2.082 | 0.65 | 230 | 2.0089 | 0.4938 |
2.0646 | 0.68 | 240 | 1.9970 | 0.5014 |
2.0636 | 0.71 | 250 | 1.9778 | 0.4946 |
2.0579 | 0.74 | 260 | 1.9609 | 0.49 |
2.028 | 0.77 | 270 | 1.9602 | 0.4862 |
2.0447 | 0.8 | 280 | 1.9460 | 0.4934 |
2.0168 | 0.82 | 290 | 1.9369 | 0.505 |
2.0126 | 0.85 | 300 | 1.9317 | 0.4926 |
2.0099 | 0.88 | 310 | 1.9235 | 0.4952 |
1.9978 | 0.91 | 320 | 1.9174 | 0.4972 |
1.9951 | 0.94 | 330 | 1.9119 | 0.507 |
1.9823 | 0.97 | 340 | 1.9120 | 0.4992 |
1.985 | 1.0 | 350 | 1.9064 | 0.5022 |
Framework versions
- Transformers 4.35.0
- Pytorch 2.1.1
- Datasets 2.14.6
- Tokenizers 0.14.1