|
--- |
|
pipeline_tag: sentence-similarity |
|
tags: |
|
- sentence-transformers |
|
- feature-extraction |
|
- word-similarity |
|
- transformers |
|
widget: |
|
- source_sentence: "Provide a large table; this is a horizontal <t>plane</t>, and will represent the ground plane, viz." |
|
sentences: |
|
- "The President's <t>plane</t> landed at Goose Bay at 9:03 p.m." |
|
- "any line joining two points on a <t>plane</t> lies wholly on that plane" |
|
- "the flight was delayed due to trouble with the <t>plane</t>" |
|
example_title: "plane" |
|
--- |
|
|
|
# pierluigic/xl-lexeme |
|
|
|
This is model is based on [sentence-transformers](https://www.SBERT.net): It maps target word in sentences to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search. |
|
|
|
<!--- Describe your model here --> |
|
|
|
## Usage (WordTransformer) |
|
|
|
Install the library: |
|
|
|
``` |
|
git clone [email protected]:pierluigic/xl-lexeme.git |
|
cd xl-lexeme |
|
pip3 install . |
|
``` |
|
|
|
Then you can use the model like this: |
|
|
|
```python |
|
from WordTransformer import WordTransformer, InputExample |
|
|
|
model = WordTransformer('pierluigic/xl-lexeme') |
|
examples = InputExample(texts="the quick fox jumps over the lazy dog", positions=[10,13]) |
|
fox_embedding = model.encode(examples) #The embedding of the target word "fox" |
|
``` |
|
|
|
|
|
|
|
## Training |
|
The model was trained with the parameters: |
|
|
|
**DataLoader**: |
|
|
|
`torch.utils.data.dataloader.DataLoader` of length 16531 with parameters: |
|
``` |
|
{'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} |
|
``` |
|
|
|
**Loss**: |
|
|
|
`sentence_transformers.losses.ContrastiveLoss.ContrastiveLoss` with parameters: |
|
``` |
|
{'distance_metric': 'SiameseDistanceMetric.COSINE_DISTANCE', 'margin': 0.5, 'size_average': True} |
|
``` |
|
|
|
Parameters of the fit()-Method: |
|
``` |
|
{ |
|
"epochs": 10, |
|
"evaluation_steps": 4132, |
|
"evaluator": "sentence_transformers.evaluation.SequentialEvaluator.SequentialEvaluator", |
|
"max_grad_norm": 1, |
|
"optimizer_class": "<class 'transformers.optimization.AdamW'>", |
|
"optimizer_params": { |
|
"lr": 1e-05 |
|
}, |
|
"scheduler": "WarmupLinear", |
|
"steps_per_epoch": null, |
|
"warmup_steps": 16531.0, |
|
"weight_decay": 0.0 |
|
} |
|
``` |
|
|
|
|
|
## Full Model Architecture |
|
``` |
|
SentenceTransformerTarget( |
|
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel |
|
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) |
|
) |
|
``` |
|
|
|
## Citing & Authors |
|
|
|
``` |
|
@inproceedings{cassotti-etal-2023-xl, |
|
title = "{XL}-{LEXEME}: {W}i{C} Pretrained Model for Cross-Lingual {LEX}ical s{EM}antic chang{E}", |
|
author = "Cassotti, Pierluigi and |
|
Siciliani, Lucia and |
|
DeGemmis, Marco and |
|
Semeraro, Giovanni and |
|
Basile, Pierpaolo", |
|
booktitle = "Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)", |
|
month = jul, |
|
year = "2023", |
|
address = "Toronto, Canada", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://aclanthology.org/2023.acl-short.135", |
|
pages = "1577--1585" |
|
} |
|
``` |