|
--- |
|
library_name: peft |
|
base_model: unsloth/gemma-2b-bnb-4bit |
|
--- |
|
|
|
``` |
|
from unsloth.chat_templates import get_chat_template |
|
|
|
|
|
tokenizer = get_chat_template( |
|
tokenizer, |
|
chat_template = "chatml", # Supports zephyr, chatml, mistral, llama, alpaca, vicuna, vicuna_old, unsloth |
|
mapping = {"role" : "role", "content" : "content", "user" : "user", "assistant" : "assistant","system":"system"}, # ShareGPT style |
|
map_eos_token = True, # Maps <|im_end|> to </s> instead |
|
) |
|
|
|
def ask(text): |
|
chat1 = [ |
|
[ |
|
{"role": "system", "content": "[Role:Translator] [Language:English]"}, |
|
{"role": "user", "content": text}, |
|
], |
|
[ |
|
{"role": "system", "content": "[Role:Translator] [Language:Thai]"}, |
|
{"role": "user", "content": text}, |
|
], |
|
[ |
|
{"role": "system", "content": "[Role:Assistant] [Language:English]"}, |
|
{"role": "user", "content": text}, |
|
], |
|
[ |
|
{"role": "system", "content": "[Role:Assistant] [Language:Thai]"}, |
|
{"role": "user", "content": text}, |
|
] |
|
] |
|
|
|
input_ids = tokenizer.apply_chat_template(chat1, add_generation_prompt=True, tokenize = True, return_tensors = "pt").to("cuda") |
|
|
|
outputs = model.generate(input_ids = input_ids, max_new_tokens = 64, use_cache = True) |
|
decoded = tokenizer.batch_decode(outputs[:, input_ids.shape[1]:],skip_special_tokens=True) |
|
|
|
print("=========================[Role:Translator] [Language:English]=========================") |
|
print(decoded[0]) |
|
print("=========================[Role:Translator] [Language:Thai]=========================") |
|
print(decoded[1]) |
|
print("=========================[Role:Assistant] [Language:English]=========================") |
|
print(decoded[2]) |
|
print("=========================[Role:Assistant] [Language:Thai]=========================") |
|
print(decoded[3]) |
|
|
|
``` |