test parameter by use split="test"
code to create dataset
import random
alpaca_prompt = """<original>{}</original>
<translate to="{}">{}"""
BOS_TOKEN = tokenizer.bos_token # Must add EOS_TOKEN
EOS_TOKEN = "</translate>"+tokenizer.eos_token # Must add EOS_TOKEN
def formatting_prompts_func(examples):
translations = examples["translation"]
texts = []
text_en = ""
text_th = ""
translate_to = 'th'
max_group_count = 1
group_count = 0
for translation in translations:
if group_count >= max_group_count:
if(translate_to == 'th'):
text = alpaca_prompt.format(text_en, translate_to, text_th) + EOS_TOKEN
else:
text = alpaca_prompt.format(text_th, translate_to, text_en) + EOS_TOKEN
texts.append(text)
text_en = ""
text_th = ""
max_group_count = random.randint(1, 5)
group_count = 0
translate_to = random.choice(['en', 'th'])
num_newlines = random.randint(1, 5)
newlines = '\n' * num_newlines
if(text_en == ""):
text_en = translation['en']
text_th = translation['th']
else:
text_en = text_en+newlines+translation['en']
text_th = text_th+newlines+translation['th']
group_count = group_count+1
if(translate_to == 'th'):
text = alpaca_prompt.format(text_en, translate_to, text_th) + EOS_TOKEN
else:
text = alpaca_prompt.format(text_th, translate_to, text_en) + EOS_TOKEN
texts.append(text)
return { "text" : texts, }
from datasets import load_dataset
dataset = load_dataset("scb_mt_enth_2020",'enth',split="test")
dataset = dataset.map(formatting_prompts_func, batched = True,remove_columns=["translation",'subdataset'])
dataset = dataset.train_test_split(test_size=0.1, shuffle=True)
dataset['train'][0:5]
- Downloads last month
- 5
Model tree for ping98k/gemma-7b-translator-0.2-lora
Base model
unsloth/gemma-7b-bnb-4bit