metadata
license: apache-2.0
base_model: facebook/wav2vec2-xls-r-300m
tags:
- generated_from_trainer
datasets:
- audiofolder
metrics:
- wer
model-index:
- name: wav2vec2-xls-r-300m-ja-phoneme_cv_14_2
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: audiofolder
type: audiofolder
config: default
split: train[:50%]
args: default
metrics:
- name: Wer
type: wer
value: 0.15702106438053623
wav2vec2-xls-r-300m-ja-phoneme_cv_14_2
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the audiofolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.8407
- Wer: 0.1570
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 2
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
5.0365 | 0.84 | 400 | 2.8613 | 0.9867 |
1.9273 | 1.68 | 800 | 0.8407 | 0.1570 |
Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu117
- Datasets 2.14.3
- Tokenizers 0.13.3