cifar100-vit-base-patch16-224-in21k
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the cifar100 dataset. It achieves the following results on the evaluation set:
- Loss: 0.2945
- Accuracy: 0.926
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 1337
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10.0
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.3866 | 1.0 | 5313 | 1.0968 | 0.8747 |
0.6479 | 2.0 | 10626 | 0.4377 | 0.9004 |
0.6092 | 3.0 | 15939 | 0.3439 | 0.9081 |
0.4173 | 4.0 | 21252 | 0.3205 | 0.9169 |
0.4665 | 5.0 | 26565 | 0.3039 | 0.9175 |
0.3944 | 6.0 | 31878 | 0.3082 | 0.9201 |
0.303 | 7.0 | 37191 | 0.3011 | 0.9241 |
0.6128 | 8.0 | 42504 | 0.2983 | 0.9261 |
0.3794 | 9.0 | 47817 | 0.2945 | 0.926 |
0.3274 | 10.0 | 53130 | 0.3032 | 0.9269 |
Framework versions
- Transformers 4.38.0
- Pytorch 2.1.2+cu118
- Datasets 2.19.1
- Tokenizers 0.15.2
- Downloads last month
- 2,081
Model tree for pkr7098/cifar100-vit-base-patch16-224-in21k
Base model
google/vit-base-patch16-224-in21k