metadata
license: cc-by-4.0
language:
- hu
extra_gated_fields:
Name: text
Country: country
Institution: text
Institution Email: text
Please specify your academic use case: text
extra_gated_prompt: >-
Our models are intended for academic use only. If you are not affiliated with
an academic institution, please provide a rationale for using our models.
Please allow us a few business days to manually review subscriptions.
Model description
Experimental model for sentiment classification in case of Hungarian news.
Intended uses & limitations
- Label "0": Positive
- Label "1": Negative
Training
Fine-tuned version of the original huBERT model (SZTAKI-HLT/hubert-base-cc
), trained on news texts.
Eval results
Class | Precision | Recall | F-Score |
---|---|---|---|
Positive | 0.86 | 0.89 | 0.88 |
Negative | 0.93 | 0.91 | 0.92 |
accuracy | 0.91 | ||
macro avg | 0.9 | 0.9 | 0.9 |
weighted avg | 0.91 | 0.91 | 0.91 |
Usage
from transformers import AutoTokenizer, AutoModelForSequenceClassification
tokenizer = AutoTokenizer.from_pretrained("poltextlab/HunMediBERT2")
model = AutoModelForSequenceClassification.from_pretrained("poltextlab/HunMediBERT2")