File size: 8,267 Bytes
16fedb3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dace061
16fedb3
fae073b
16fedb3
dace061
16fedb3
dace061
16fedb3
dace061
16fedb3
 
 
dace061
16fedb3
dace061
16fedb3
dace061
 
fae073b
 
 
 
 
 
16fedb3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dace061
16fedb3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de18286
 
 
 
 
 
 
 
 
16fedb3
de18286
9026254
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
---
license: mit

inference:
  parameters:
    aggregation_strategy: "average"

language:
  - pt
pipeline_tag: token-classification
tags:
  - medialbertina-ptpt
  - deberta
  - portuguese
  - european portuguese
  - medical
  - clinical
  - healthcare
  - NER
  - Named Entity Recognition
  - IE
  - Information Extraction
widget:
  - text: Durante a cirurgia ortopédica para corrigir a fratura no tornozelo, foram medidos vários sinais no utente, incluindo a PA, com leitura de 120/87 mmHg e a frequência cardíaca, de 80 batimentos por minuto. Após a cirurgia o utente apresentava  dor intensa no local e inchaço no tornozelo, mas os resultados da radiografia revelaram uma recuperação satisfatória. Foi prescrito ibuprofeno 600mg de 8-8 horas/3 dias. 
    example_title: Example 1
  - text: Após avaliação inicial de um paciente do sexo masculino, de 55 anos, com AP de hipertensão arterial e Diabetes Mellitus T2, foram observados sintomas consistentes com uma possível crise hipertensiva, incluindo cefaleia intensa, náuseas e visão turva. Os sinais vitais revelaram uma pressão arterial sistólica de 190 mmHg e diastólica de 110 mmHg, frequência cardíaca de 100 bpm e saturação de oxigénio de 97% em ar ambiente.  O ECG mostrou uma onda T invertida em V1, um achado comum, mas não específico. O paciente foi diagnosticado com crise hipertensiva complicada por insuficiência cardíaca congestiva aguda. Foi iniciado tratamento com nitroprussiato de sódio por via intravenosa, com uma dose inicial de 0,5 mcg/kg/min, ajustado de acordo com a resposta hemodinâmica, bem como uma dose de furosemida de 40 mg IV para promover a diurese. Após 30 minutos de terapia, a pressão arterial reduziu para 150/90 mmHg e a frequência cardíaca diminuiu para 85 bpm, com melhoria dos sintomas. A evolução clínica foi favorável, com estabilização dos sinais vitais e resolução dos sintomas nas primeiras 24 horas. O paciente foi transferido para a unidade de cuidados intensivos para monitorização contínua e otimização do tratamento de longo prazo para a gestão da HTA e IC.
    example_title: Example 2
  - text: A TAC CE revelou uma massa hipodensa no lobo frontal esquerdo.
    example_title: Example 3
  - text: Foi recomendada aspirina de 500mg  4-4 horas por 3 dias.
    example_title: Example 4
  - text: A transfusão de concentrado eritrocitário foi realizada para tratar a anemia severa do paciente após a cirurgia.
    example_title: Example 5
  - text: Monitorização da  Freq. cardíaca com 90 bpm. P Arterial de 120-80 mmHg
    example_title: Example 6
  - text: A presença de febre persistente, sudorese noturna e perda de peso inexplicada sugere fortemente a possibilidade de tuberculose ativa.
    example_title: Example 7
  - text: A paciente foi diagnosticada com esclerose múltipla e iniciou terapia com imunomoduladores.
    example_title: Example 8
  - text: AC - aumento do intervalo entre S1 e S2, possível bloqueio atrioventricular de primeiro grau.
    example_title: Example 9
  - text: A ressecção do tumor cerebral resultou numa melhoria significativa do estado neurológico do paciente.
    example_title: Example 10
  - text: Doente com antecedente de AVC isquémico, revela ptose palpebral esquerda e espetoração esverdeada recorrentemente.
    example_title: Example 11
  - text: Doente com insuficiência cardíaca entrou em PC-R. Na sequência do episódio, foi medida a PCR - 13 mg/dL e posteriormente efetuado teste PCR, para deteção da presença do vírus SARS-CoV-2.
    example_title: Example 12
---

# MediAlbertina
The first publicly available medical language model trained with real European Portuguese data.

MediAlbertina is a family of encoders from the Bert family, DeBERTaV2-based, resulting from the continuation of the pre-training of [PORTULAN's Albertina](https://huggingface.co/PORTULAN) models with Electronic Medical Records shared by Portugal's largest public hospital.

Like its antecessors, MediAlbertina models are distributed under the [MIT license](https://huggingface.co/portugueseNLP/medialbertina_pt-pt_1.5b_NER/blob/main/LICENSE).



# Model Description

**MediAlbertina PT-PT 1.5 NER** was created through fine-tuning of [MediAlbertina PT-PT 1.5B](https://huggingface.co/portugueseNLP/medialbertina_pt-pt_1.5b) on real European Portuguese EMRs that have been hand-annotated for the following entities:
- **Diagnostico (D)**: All types of diseases and conditions following the ICD-10-CM guidelines.
- **Sintoma (S)**: Any complaints or evidence from healthcare professionals indicating that a patient is experiencing a medical condition.
- **Medicamento (M)**: Something that is administrated to the patient (through any route), including drugs, specific food/drink, vitamins, or blood for transfusion.
- **Dosagem (D)**: Dosage and frequency of medication administration.
- **ProcedimentoMedico (PM)**: Anything healthcare professionals do related to patients, including exams, moving patients, administering something, or even surgeries.
- **SinalVital (SV)**: Quantifiable indicators in a patient that can be measured, always associated with a specific result. Examples include cholesterol levels, diuresis, weight, or glycaemia.
- **Resultado (R)**: Results can be associated with Medical Procedures and Vital Signs. It can be a numerical value if something was measured (e.g., the value associated with blood pressure) or a descriptor to indicate the result (e.g., positive/negative, functional).
- **Progresso (P)**: Describes the progress of patient’s condition. Typically, it includes verbs like improving, evolving, or regressing and mentions to patient’s stability. 
  
**MediAlbertina PT-PT 1.5B NER** achieved superior results to the same adaptation made on a non-medical Portuguese language model, demonstrating the effectiveness of this domain adaptation, and its potential for medical AI in Portugal.

| Checkpoints           |   Prec    |   Rec   |   F1   |
|-----------------------|--------|--------|--------|
| Albertina PT-PT 900M  | 0.814  | 0.814  | 0.813  |
| Albertina PT-PT 1.5B  | 0.833  | **0.845**  | 0.838  |
| MediAlbertina PT-PT900M| 0.84   | 0.828  | 0.832  |
| **MediAlbertina PT-PT 1.5B**| **0.842**  | **0.845**  | **0.843**  |




## Data

**MediAlbertina PT-PT 1.5B NER** was fine-tuned on about 10k hand-annotated medical entities from about 4k fully anonymized medical sentences from Portugal's largest public hospital. This data was acquired under the framework of the [FCT project DSAIPA/AI/0122/2020 AIMHealth-Mobile Applications Based on Artificial Intelligence](https://ciencia.iscte-iul.pt/projects/aplicacoes-moveis-baseadas-em-inteligencia-artificial-para-resposta-de-saude-publica/1567).


## How to use

```Python
from transformers import pipeline

ner_pipeline = pipeline('ner', model='portugueseNLP/medialbertina_pt-pt_1.5b_NER', aggregation_strategy='average')
sentence = 'Durante o procedimento endoscópico, foram encontrados pólipos no cólon do paciente.'
entities = ner_pipeline(sentence)
for entity in entities:
    print(f"{entity['entity_group']} - {sentence[entity['start']:entity['end']]}")
```

## Citation

MediAlbertina is developed by a joint team from [ISCTE-IUL](https://www.iscte-iul.pt/), Portugal, and [Select Data](https://selectdata.com/), CA USA. For a fully detailed description, check the respective publication:

```latex
@article{MediAlbertina PT-PT,
      title={MediAlbertina: An European Portuguese medical language model}, 
      author={Miguel Nunes and João Boné and João Ferreira
              and Pedro Chaves and Luís Elvas},
      year={2024},
      journal={CBM},
      volume={182}
      url={https://doi.org/10.1016/j.compbiomed.2024.109233}
}
```
Please use the above cannonical reference when using or citing this [model](https://www.sciencedirect.com/science/article/pii/S0010482524013180?via%3Dihub).

## Acknowledgements

This work was financially supported by Project Blockchain.PT – Decentralize Portugal with Blockchain Agenda, (Project no 51), WP2, Call no 02/C05-i01.01/2022, funded by the Portuguese Recovery and Resillience Program (PRR), The Portuguese Republic and The European Union (EU) under the framework of Next Generation EU Program.