miguel6nunes's picture
Update README.md
16fedb3 verified
|
raw
history blame
5.67 kB
metadata
license: mit
inference:
  parameters:
    aggregation_strategy: average
language:
  - pt
pipeline_tag: token-classification
tags:
  - medialbertina-ptpt
  - deberta
  - portuguese
  - european portuguese
  - medical
  - clinical
  - healthcare
  - NER
  - Named Entity Recognition
  - IE
  - Information Extraction
widget:
  - text: >-
      Durante a cirurgia ortopédica para corrigir a fratura no tornozelo, os
      sinais vitais do utente, incluindo a pressão arterial, com leitura de
      120/87 mmHg e a frequência cardíaca, de 80 batimentos por minuto, foram
      monitorizados. Após a cirurgia o utente apresentava  dor intensa no local
      e inchaço no tornozelo, mas os resultados da radiografia revelaram uma
      recuperação satisfatória. Foi prescrito ibuprofeno 600mg de 8 em 8 horas
      durante 3 dias.
    example_title: Example 1
  - text: >-
      Durante o procedimento endoscópico, foram encontrados pólipos no cólon do
      paciente.
    example_title: Example 2
  - text: Foi recomendada aspirina de 500mg a cada 4 horas, durante 3 dias.
    example_title: Example 3
  - text: >-
      Após as sessões de fisioterapia o paciente apresenta recuperação de
      mobilidade.
    example_title: Example 4
  - text: >-
      O paciente está em Quimioterapia com uma dosagem específica de Cisplatina
      para o tratamento do cancro do pulmão.
    example_title: Example 5
  - text: Monitorização da  Freq. cardíaca com 90 bpm. P Arterial de 120-80 mmHg
    example_title: Example 6
  - text: >-
      A ressonância magnética da utente revelou uma rotura no menisco lateral do
      joelho.
    example_title: Example 7
  - text: >-
      A paciente foi diagnosticada com esclerose múltipla e iniciou terapia com
      imunomoduladores.
    example_title: Example 8

MediAlbertina

The first publicly available medical language model trained with real European Portuguese data.

MediAlbertina is a family of encoders from the Bert family, DeBERTaV2-based, resulting from the continuation of the pre-training of PORTULAN's Albertina models with Electronic Medical Records shared by Portugal's largest public hospital.

Like its antecessors, MediAlbertina models are distributed under the MIT license.

Model Description

MediAlbertina PT-PT 1.5 NER was created through fine-tuning of MediAlbertina PT-PT 1.5B on real European Portuguese EMRs that have been hand-annotated for the following entities:

  • Diagnostico (D): All types of diseases and conditions following the ICD-10-CM guidelines.
  • Sintoma (S): Any complaints or evidence from healthcare professionals indicating that a patient is experiencing a medical condition.
  • Medicamento (M): Something that is administrated to the patient (through any route), including drugs, specific food/drink, vitamins, or blood for transfusion.
  • Dosagem (D): Dosage and frequency of medication administration.
  • ProcedimentoMedico (PM): Anything healthcare professionals do related to patients, including exams, moving patients, administering something, or even surgeries.
  • SinalVital (SV): Quantifiable indicators in a patient that can be measured, always associated with a specific result. Examples include cholesterol levels, diuresis, weight, or glycaemia.
  • Resultado (R): Results can be associated with Medical Procedures and Vital Signs. It can be a numerical value if something was measured (e.g., the value associated with blood pressure) or a descriptor to indicate the result (e.g., positive/negative, functional).
  • Progresso (P): Describes the progress of patient’s condition. Typically, it includes verbs like improving, evolving, or regressing and mentions to patient’s stability.

MediAlbertina PT-PT 1.5B NER achieved superior results to the same adaptation made on a non-medical Portuguese language model, demonstrating the effectiveness of this domain adaptation, and its potential for medical AI in Portugal.

Checkpoints P R F1
Albertina PT-PT 900M 0.814 0.814 0.813
Albertina PT-PT 1.5B 0.833 0.845 0.838
MediAlbertina PT-PT900M 0.84 0.828 0.832
MediAlbertina PT-PT 1.5B 0.842 0.845 0.843

Data

MediAlbertina PT-PT 1.5B NER was fine-tuned on about 10k hand-annotated medical entities from about 4k fully anonymized medical sentences from Portugal's largest public hospital. This data was acquired under the framework of the FCT project DSAIPA/AI/0122/2020 AIMHealth-Mobile Applications Based on Artificial Intelligence.

How to use

from transformers import pipeline

ner_pipeline = pipeline('ner', model='portugueseNLP/medialbertina_pt-pt_1.5b_NER', aggregation_strategy='average')
sentence = 'Durante o procedimento endoscópico, foram encontrados pólipos no cólon do paciente.'
entities = ner_pipeline(sentence)
for entity in entities:
    print(f"{entity['entity_group']} - {sentence[entity['start']:entity['end']]}")

Citation

MediAlbertina is developed by a joint team from ISCTE-IUL, Portugal, and Select Data, CA USA. For a fully detailed description, check the respective publication:

In publishing process. Reference will be added soon.

Please use the above cannonical reference when using or citing this model.