Updates model.py file.
Browse files- model.py +30 -11
- pipeline.ipynb +0 -0
model.py
CHANGED
@@ -1,19 +1,38 @@
|
|
1 |
import torch.nn as nn
|
2 |
-
|
3 |
|
4 |
-
|
5 |
-
def __init__(self, config):
|
6 |
-
super().__init__(config)
|
7 |
-
self.base_model = AutoModel.from_pretrained(config.model_path, config=config)
|
8 |
-
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
9 |
-
self.config = config
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
def forward(self, input_ids, attention_mask, labels=None):
|
12 |
-
|
13 |
-
|
14 |
-
|
|
|
|
|
|
|
|
|
15 |
loss = None
|
16 |
if labels is not None:
|
17 |
loss_fn = nn.BCEWithLogitsLoss()
|
18 |
loss = loss_fn(logits, labels.float())
|
19 |
-
return {"loss": loss, "logits": logits}
|
|
|
1 |
import torch.nn as nn
|
2 |
+
import torch
|
3 |
|
4 |
+
from transformers import AutoModel
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
+
NUM_LABELS = 4
|
7 |
+
|
8 |
+
# Model with frozen LLaMA weights
|
9 |
+
class LlamaClassificationModel(nn.Module):
|
10 |
+
def __init__(self, model_path = "meta-llama/Llama-3.2-1B", freeze_weights = True):
|
11 |
+
super(LlamaClassificationModel, self).__init__()
|
12 |
+
self.base_model = AutoModel.from_pretrained(model_path)
|
13 |
+
|
14 |
+
# For push to hub.
|
15 |
+
self.config = self.base_model.config
|
16 |
+
print(self.base_model.config)
|
17 |
+
|
18 |
+
# Freeze the base model's weights
|
19 |
+
if freeze_weights:
|
20 |
+
for param in self.base_model.parameters():
|
21 |
+
param.requires_grad = False
|
22 |
+
|
23 |
+
# Add a classification head
|
24 |
+
self.classifier = nn.Linear(self.base_model.config.hidden_size, NUM_LABELS)
|
25 |
+
|
26 |
def forward(self, input_ids, attention_mask, labels=None):
|
27 |
+
with torch.no_grad(): # No gradients for the base model
|
28 |
+
outputs = self.base_model(input_ids=input_ids, attention_mask=attention_mask)
|
29 |
+
|
30 |
+
# Sum hidden states over the sequence dimension
|
31 |
+
summed_representation = outputs.last_hidden_state.sum(dim=1) # Summing over sequence length
|
32 |
+
|
33 |
+
logits = self.classifier(summed_representation) # Pass the summed representation to the classifier
|
34 |
loss = None
|
35 |
if labels is not None:
|
36 |
loss_fn = nn.BCEWithLogitsLoss()
|
37 |
loss = loss_fn(logits, labels.float())
|
38 |
+
return {"loss": loss, "logits": logits}
|
pipeline.ipynb
ADDED
File without changes
|