|
--- |
|
license: apache-2.0 |
|
base_model: sentence-transformers/paraphrase-multilingual-mpnet-base-v2 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: mpnet-multi-agri-classifier |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# mpnet-multi-agri-classifier |
|
|
|
This model is a fine-tuned version of [sentence-transformers/paraphrase-multilingual-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3444 |
|
- Precision Macro: 0.8402 |
|
- Precision Weighted: 0.9196 |
|
- Recall Macro: 0.9042 |
|
- Recall Weighted: 0.9046 |
|
- F1-score: 0.8655 |
|
- Accuracy: 0.9046 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 6.9e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 200 |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision Macro | Precision Weighted | Recall Macro | Recall Weighted | F1-score | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------------:|:------------------:|:------------:|:---------------:|:--------:|:--------:| |
|
| 0.393 | 1.0 | 334 | 0.2938 | 0.8528 | 0.9132 | 0.8773 | 0.9092 | 0.8641 | 0.9092 | |
|
| 0.3213 | 2.0 | 668 | 0.3049 | 0.8299 | 0.9110 | 0.8885 | 0.8966 | 0.8534 | 0.8966 | |
|
| 0.2591 | 3.0 | 1002 | 0.2561 | 0.8654 | 0.9226 | 0.8937 | 0.9184 | 0.8784 | 0.9184 | |
|
| 0.1853 | 4.0 | 1336 | 0.3254 | 0.8386 | 0.9190 | 0.9034 | 0.9034 | 0.8641 | 0.9034 | |
|
| 0.1119 | 5.0 | 1670 | 0.3444 | 0.8402 | 0.9196 | 0.9042 | 0.9046 | 0.8655 | 0.9046 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.2 |
|
- Pytorch 1.12.0+cu102 |
|
- Datasets 2.3.2 |
|
- Tokenizers 0.15.0 |
|
|