|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
r"""Distilling BiT-R152x2 into BiT-R50x1 on ILSVRC-2012 as in https://arxiv.org/abs/2106.05237 |
|
|
|
Note that as per paper title, good results require many epochs and thus |
|
a lot of _patience_. For experimentation/exploration, consider |
|
using the smaller datasets. |
|
|
|
300ep take about 15h on a v3-32 TPU, an example log is available at: |
|
Example logs at gs://big_vision/distill/bit_i1k_300ep_06-16/big_vision_metrics.txt |
|
|
|
big_vision.trainers.proj.distill.distill \ |
|
--config big_vision/configs/proj/distill/bit_i1k.py \ |
|
--workdir gs://[your_bucket]/big_vision/`date '+%m-%d_%H%M'` \ |
|
--config.total_epochs 1200 |
|
""" |
|
|
|
import big_vision.configs.common as bvcc |
|
from big_vision.configs.common_fewshot import get_fewshot_lsr |
|
import big_vision.configs.proj.distill.common as cd |
|
import ml_collections as mlc |
|
|
|
|
|
def get_config(arg=None): |
|
"""Config for distilling on ImageNet.""" |
|
arg = bvcc.parse_arg(arg, runlocal=False) |
|
config = mlc.ConfigDict() |
|
|
|
config.input = {} |
|
config.input.data = dict(name='imagenet2012', split='train[:98%]') |
|
config.input.batch_size = 4096 |
|
config.input.shuffle_buffer_size = 250_000 |
|
|
|
config.num_classes = 1000 |
|
config.total_epochs = 1200 |
|
|
|
config.log_training_steps = 50 |
|
config.ckpt_steps = 1000 |
|
config.keep_ckpt_steps = 20000 |
|
|
|
|
|
config.student_name = 'bit_paper' |
|
config.student = dict(depth=50, width=1) |
|
|
|
config.teachers = ['prof_m'] |
|
|
|
|
|
config.prof_m_name = 'bit_paper' |
|
config.prof_m_init = cd.inits['BiT-M R152x2 imagenet2012 ic224'] |
|
config.prof_m = dict(depth=152, width=2) |
|
|
|
pp_common = ( |
|
'|value_range(-1, 1)' |
|
'|onehot(1000, key="{lbl}", key_result="labels")' |
|
'|keep("image", "labels")' |
|
) |
|
config.input.pp = ( |
|
'decode_jpeg_and_inception_crop(224)|flip_lr' + |
|
pp_common.format(lbl='label') |
|
) |
|
ppv = 'decode|resize_small(256)|central_crop(224)' + pp_common |
|
|
|
config.mixup = dict(p=1.0) |
|
|
|
|
|
config.distance = 'kl' |
|
config.distance_kw = dict(t=1.0) |
|
|
|
|
|
config.grad_clip_norm = 1.0 |
|
config.optax_name = 'scale_by_adam' |
|
config.optax = dict(mu_dtype='bfloat16') |
|
|
|
config.lr = 0.03 |
|
config.wd = 0.0003 |
|
config.schedule = dict(warmup_steps=5000, decay_type='cosine') |
|
|
|
|
|
minitrain_split = 'train[:2%]' if not arg.runlocal else 'train[:16]' |
|
minival_split = 'train[99%:]' if not arg.runlocal else 'train[:16]' |
|
val_split = 'validation' if not arg.runlocal else 'validation[:16]' |
|
real_split = 'validation' if not arg.runlocal else 'validation[:16]' |
|
v2_split = 'test' if not arg.runlocal else 'test[:16]' |
|
|
|
def get_eval(split, dataset='imagenet2012'): |
|
return dict( |
|
type='classification', |
|
pred='student_fwd', |
|
data=dict(name=dataset, split=split), |
|
pp_fn=ppv.format(lbl='label'), |
|
loss_name='softmax_xent', |
|
log_steps=1000, |
|
) |
|
|
|
config.evals = {} |
|
config.evals.student_train = get_eval(minitrain_split) |
|
config.evals.student_minival = get_eval(minival_split) |
|
config.evals.student_val = get_eval(val_split) |
|
config.evals.student_v2 = get_eval(v2_split, dataset='imagenet_v2') |
|
config.evals.student_real = get_eval(real_split, dataset='imagenet2012_real') |
|
config.evals.student_real.pp_fn = ppv.format(lbl='real_label') |
|
|
|
config.evals.student_fewshot = get_fewshot_lsr(runlocal=arg.runlocal) |
|
config.evals.student_fewshot.pred = 'student_fwd' |
|
config.evals.student_fewshot.log_steps = 10_000 |
|
|
|
teacher_eval = dict( |
|
log_steps=100_000, |
|
pred='prof_m_fwd', |
|
) |
|
config.evals.teacher_train = {**config.evals.student_train, **teacher_eval} |
|
config.evals.teacher_minival = {**config.evals.student_minival, **teacher_eval} |
|
config.evals.teacher_val = {**config.evals.student_val, **teacher_eval} |
|
config.evals.teacher_v2 = {**config.evals.student_v2, **teacher_eval} |
|
config.evals.teacher_real = {**config.evals.student_real, **teacher_eval} |
|
config.evals.teacher_fewshot = {**config.evals.student_fewshot, **teacher_eval} |
|
config.evals.teacher_fewshot.prefix = 'z_teacher/' |
|
|
|
|
|
def get_dist(split, dataset='imagenet2012'): |
|
return dict( |
|
type='proj.distill.distance', |
|
pred='student_prof_m_fwd', |
|
data=dict(name=dataset, split=split), |
|
pp_fn=ppv.format(lbl='label') + '|keep("image")', |
|
log_steps=1000, |
|
distances=({'kind': 'kl'}, {'kind': 'euclidean'}, |
|
{'kind': 'agree', 'k': 1}, {'kind': 'agree', 'k': 5}), |
|
) |
|
config.evals.dist_train = get_dist(minitrain_split) |
|
config.evals.dist_minival = get_dist(minival_split) |
|
config.evals.dist_val = get_dist(val_split) |
|
config.evals.dist_v2 = get_dist(v2_split, dataset='imagenet_v2') |
|
|
|
|
|
|
|
def get_cka(split): |
|
return dict( |
|
type='proj.distill.cka', |
|
pred='student_prof_m_fwd', |
|
data=dict(name='imagenet2012', split=split), |
|
pp_fn=ppv.format(lbl='label') + '|keep("image")', |
|
log_steps=1000, |
|
) |
|
config.evals.cka_train = get_cka('train[:24576]' if not arg.runlocal else 'train[:16]') |
|
config.evals.cka_minival = get_cka('train[-24576:]' if not arg.runlocal else 'train[:16]') |
|
config.evals.cka_val = get_cka('validation[:49152]' if not arg.runlocal else 'validation[:16]') |
|
|
|
|
|
if arg.runlocal: |
|
config.input.shuffle_buffer_size = 10 |
|
config.input.batch_size = 8 |
|
|
|
return config |