pranavSIT's picture
added pali inference
74e8f2f
# Copyright 2024 Big Vision Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=line-too-long
r"""Distilling BiT-R152x2 into BiT-R50x1 on ILSVRC-2012 as in https://arxiv.org/abs/2106.05237
Note that as per paper title, good results require many epochs and thus
a lot of _patience_. For experimentation/exploration, consider
using the smaller datasets.
300ep take about 15h on a v3-32 TPU, an example log is available at:
Example logs at gs://big_vision/distill/bit_i1k_300ep_06-16/big_vision_metrics.txt
big_vision.trainers.proj.distill.distill \
--config big_vision/configs/proj/distill/bit_i1k.py \
--workdir gs://[your_bucket]/big_vision/`date '+%m-%d_%H%M'` \
--config.total_epochs 1200
"""
import big_vision.configs.common as bvcc
from big_vision.configs.common_fewshot import get_fewshot_lsr
import big_vision.configs.proj.distill.common as cd
import ml_collections as mlc
def get_config(arg=None):
"""Config for distilling on ImageNet."""
arg = bvcc.parse_arg(arg, runlocal=False)
config = mlc.ConfigDict()
config.input = {}
config.input.data = dict(name='imagenet2012', split='train[:98%]')
config.input.batch_size = 4096
config.input.shuffle_buffer_size = 250_000
config.num_classes = 1000
config.total_epochs = 1200 # A good middle-ground
config.log_training_steps = 50
config.ckpt_steps = 1000
config.keep_ckpt_steps = 20000
# Model section
config.student_name = 'bit_paper'
config.student = dict(depth=50, width=1)
config.teachers = ['prof_m'] # You could even add multiple.
# TODO: use public checkpoint name.
config.prof_m_name = 'bit_paper'
config.prof_m_init = cd.inits['BiT-M R152x2 imagenet2012 ic224']
config.prof_m = dict(depth=152, width=2)
pp_common = (
'|value_range(-1, 1)'
'|onehot(1000, key="{lbl}", key_result="labels")'
'|keep("image", "labels")'
)
config.input.pp = (
'decode_jpeg_and_inception_crop(224)|flip_lr' +
pp_common.format(lbl='label')
)
ppv = 'decode|resize_small(256)|central_crop(224)' + pp_common
config.mixup = dict(p=1.0)
# Distillation settings
config.distance = 'kl'
config.distance_kw = dict(t=1.0)
# Optimizer section
config.grad_clip_norm = 1.0
config.optax_name = 'scale_by_adam'
config.optax = dict(mu_dtype='bfloat16')
config.lr = 0.03
config.wd = 0.0003
config.schedule = dict(warmup_steps=5000, decay_type='cosine')
# Eval section
minitrain_split = 'train[:2%]' if not arg.runlocal else 'train[:16]'
minival_split = 'train[99%:]' if not arg.runlocal else 'train[:16]'
val_split = 'validation' if not arg.runlocal else 'validation[:16]'
real_split = 'validation' if not arg.runlocal else 'validation[:16]'
v2_split = 'test' if not arg.runlocal else 'test[:16]'
def get_eval(split, dataset='imagenet2012'):
return dict(
type='classification',
pred='student_fwd',
data=dict(name=dataset, split=split),
pp_fn=ppv.format(lbl='label'),
loss_name='softmax_xent',
log_steps=1000,
)
config.evals = {}
config.evals.student_train = get_eval(minitrain_split)
config.evals.student_minival = get_eval(minival_split)
config.evals.student_val = get_eval(val_split)
config.evals.student_v2 = get_eval(v2_split, dataset='imagenet_v2')
config.evals.student_real = get_eval(real_split, dataset='imagenet2012_real')
config.evals.student_real.pp_fn = ppv.format(lbl='real_label')
config.evals.student_fewshot = get_fewshot_lsr(runlocal=arg.runlocal)
config.evals.student_fewshot.pred = 'student_fwd'
config.evals.student_fewshot.log_steps = 10_000
teacher_eval = dict(
log_steps=100_000, # Teacher is fixed, so rare evals.
pred='prof_m_fwd',
)
config.evals.teacher_train = {**config.evals.student_train, **teacher_eval}
config.evals.teacher_minival = {**config.evals.student_minival, **teacher_eval}
config.evals.teacher_val = {**config.evals.student_val, **teacher_eval}
config.evals.teacher_v2 = {**config.evals.student_v2, **teacher_eval}
config.evals.teacher_real = {**config.evals.student_real, **teacher_eval}
config.evals.teacher_fewshot = {**config.evals.student_fewshot, **teacher_eval}
config.evals.teacher_fewshot.prefix = 'z_teacher/'
# Could in principle also look at agreement on other datasets!
def get_dist(split, dataset='imagenet2012'):
return dict(
type='proj.distill.distance',
pred='student_prof_m_fwd',
data=dict(name=dataset, split=split),
pp_fn=ppv.format(lbl='label') + '|keep("image")',
log_steps=1000,
distances=({'kind': 'kl'}, {'kind': 'euclidean'},
{'kind': 'agree', 'k': 1}, {'kind': 'agree', 'k': 5}),
)
config.evals.dist_train = get_dist(minitrain_split)
config.evals.dist_minival = get_dist(minival_split)
config.evals.dist_val = get_dist(val_split)
config.evals.dist_v2 = get_dist(v2_split, dataset='imagenet_v2')
# NOTE: CKA evaluator does not work with batch padding, so the size of the
# split must be a multiple of the batch size.
def get_cka(split):
return dict(
type='proj.distill.cka',
pred='student_prof_m_fwd',
data=dict(name='imagenet2012', split=split),
pp_fn=ppv.format(lbl='label') + '|keep("image")',
log_steps=1000,
)
config.evals.cka_train = get_cka('train[:24576]' if not arg.runlocal else 'train[:16]')
config.evals.cka_minival = get_cka('train[-24576:]' if not arg.runlocal else 'train[:16]')
config.evals.cka_val = get_cka('validation[:49152]' if not arg.runlocal else 'validation[:16]')
# Make a few things much smaller for quick local debugging testruns.
if arg.runlocal:
config.input.shuffle_buffer_size = 10
config.input.batch_size = 8
return config