|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
r"""Distill flexible-seqlen ViT on ImageNet-21k from (internal link) B/8. |
|
|
|
This config is for reference, we never ran it on public infrastructure. |
|
|
|
big_vision.trainers.proj.flexi.distill \ |
|
--config big_vision/configs/proj/flexivit/i21k_distill.py \ |
|
--workdir gs://[your_bucket]/big_vision/`date '+%m-%d_%H%M'` \ |
|
--config.total_epochs 90 |
|
""" |
|
|
|
import big_vision.configs.common as bvcc |
|
|
|
|
|
def get_config(arg=None): |
|
"""Config for training.""" |
|
|
|
|
|
c = bvcc.parse_arg(arg, runlocal=False, res=240) |
|
|
|
c.seed = 0 |
|
c.total_epochs = 90 |
|
c.num_classes = 21843 |
|
c.init_head_bias = -10.0 |
|
c.loss = 'sigmoid_xent' |
|
|
|
c.input = dict() |
|
c.input.data = dict( |
|
name='imagenet21k', |
|
split='full[51200:]', |
|
) |
|
c.input.batch_size = 4096 if not c.runlocal else 8 |
|
c.input.shuffle_buffer_size = 250_000 if not c.runlocal else 25 |
|
|
|
pp_label_i21k = f'|onehot({c.num_classes})|keep("image", "prof", "labels")' |
|
pp_label_i1k = '|onehot(1000, key="{lbl}", key_result="labels")|keep("image", "prof", "labels")' |
|
c.input.pp = ( |
|
f'decode|inception_crop|flip_lr|copy("image", "prof")' |
|
f'|resize({c.res})|value_range(-1, 1)' |
|
f'|resize(224, outkey="prof")|value_range(-1, 1, key="prof")' |
|
+ pp_label_i21k |
|
) |
|
pp_eval_both = ( |
|
'decode|copy("image", "prof")|' |
|
f'|resize_small({c.res//7*8})|central_crop({c.res})|value_range(-1, 1)' |
|
f'|resize_small(256, key="prof")|central_crop(224, key="prof")|value_range(-1, 1, key="prof")|' |
|
) |
|
pp_eval_student = ( |
|
f'decode|resize({c.res//7*8})|central_crop({c.res})|value_range(-1, 1)' |
|
) |
|
pp_eval_prof = ( |
|
'decode|resize(256)|central_crop(224)|value_range(-1, 1, outkey="prof")' |
|
) |
|
|
|
|
|
|
|
|
|
c.input.prefetch = 8 |
|
c.prefetch_to_device = 4 |
|
|
|
c.log_training_steps = 50 |
|
c.ckpt_steps = 1000 |
|
|
|
|
|
init = 'howto-i21k-B/8' |
|
c.student_name = 'proj.flexi.vit' |
|
c.student_init = init |
|
c.student = dict(variant='B', pool_type='tok', patch_size=(8, 8)) |
|
|
|
c.teachers = ['prof'] |
|
c.prof_name = 'vit' |
|
c.prof_init = init |
|
c.prof = dict(variant='B/8', pool_type='tok') |
|
|
|
|
|
c.flexi = dict() |
|
c.flexi.seqhw = dict( |
|
|
|
|
|
v=(5, 6, 8, 10, 12, 15, 16, 20, 24, 30), |
|
|
|
p=(1, 1, 1, 1, 1, 1, 1, 1, 1, 1), |
|
) |
|
|
|
|
|
c.distance = 'kl' |
|
c.distance_kw = dict(t=1.0) |
|
|
|
|
|
c.optax_name = 'scale_by_adam' |
|
c.optax = dict(mu_dtype='bfloat16') |
|
c.grad_clip_norm = 1.0 |
|
|
|
c.lr = 1e-4 |
|
c.wd = 1e-5 |
|
c.schedule = dict(warmup_steps=5000, decay_type='cosine') |
|
|
|
c.mixup = dict(p=1.0) |
|
|
|
|
|
|
|
c.evals = {} |
|
def mksplit(split): |
|
if c.runlocal: |
|
return split.split('[')[0] + '[:16]' |
|
return split |
|
|
|
|
|
|
|
|
|
|
|
def eval_i21k(s, split): |
|
return dict( |
|
type='classification', |
|
pred=f'student_seqhw={s}', |
|
data={**c.input.data, 'split': mksplit(split)}, |
|
pp_fn=pp_eval_student + pp_label_i21k, |
|
loss_name=c.loss, |
|
log_steps=5000, |
|
) |
|
|
|
for s in c.flexi.seqhw.v: |
|
c.evals[f'student_test{s:02d}'] = eval_i21k(s, 'full[:25_600]') |
|
c.evals[f'student_val{s:02d}'] = eval_i21k(s, 'full[25_600:51_200]') |
|
c.evals[f'student_minitrain{s:02d}'] = eval_i21k(s, 'full[51_200:76_800]') |
|
|
|
|
|
def eval_i1k(s, dataset, split, lblmap): |
|
return dict( |
|
type='classification_with_labelmap', |
|
pred=f'student_seqhw={s}', |
|
data=dict(name=dataset, split=mksplit(split)), |
|
pp_fn=pp_eval_student + pp_label_i1k.format(lbl='label'), |
|
loss_name=c.loss, |
|
log_steps=5000, |
|
label_mapping=lblmap, |
|
) |
|
for s in c.flexi.seqhw.v: |
|
c.evals[f'student_i1k_val{s:02d}'] = eval_i1k(s, 'imagenet2012', 'validation', 'i1k_i21k') |
|
c.evals[f'student_i1k_v2{s:02d}'] = eval_i1k(s, 'imagenet_v2', 'test', 'i1k_i21k') |
|
c.evals[f'student_i1k_a{s:02d}'] = eval_i1k(s, 'imagenet_a', 'test', 'i1ka_i21k') |
|
c.evals[f'student_i1k_r{s:02d}'] = eval_i1k(s, 'imagenet_r', 'test', 'i1kr_i21k') |
|
c.evals[f'student_i1k_real{s:02d}'] = eval_i1k(s, 'imagenet2012_real', 'validation', 'i1k_i21k') |
|
c.evals[f'student_i1k_real{s:02d}'].pp_fn = pp_eval_student + pp_label_i1k.format(lbl='real_label') |
|
|
|
|
|
|
|
|
|
|
|
|
|
def eval_i21k_t(split): |
|
return dict( |
|
type='classification', |
|
pred='prof', |
|
data={**c.input.data, 'split': mksplit(split)}, |
|
pp_fn=pp_eval_prof + pp_label_i21k, |
|
loss_name=c.loss, |
|
log_steps=5000, |
|
) |
|
|
|
c.evals.teacher_test = eval_i21k_t('full[:25_600]') |
|
c.evals.teacher_val = eval_i21k_t('full[25_600:51_200]') |
|
c.evals.teacher_minitrain = eval_i21k_t('full[51_200:76_800]') |
|
|
|
|
|
def eval_i1k_t(dataset, split, lblmap): |
|
return dict( |
|
type='classification_with_labelmap', |
|
pred='prof', |
|
data=dict(name=dataset, split=mksplit(split)), |
|
pp_fn=pp_eval_prof + pp_label_i1k.format(lbl='label'), |
|
loss_name=c.loss, |
|
log_percent=0.5, |
|
label_mapping=lblmap, |
|
) |
|
c.evals.teacher_i1k_val = eval_i1k_t('imagenet2012', 'validation', 'i1k_i21k') |
|
c.evals.teacher_i1k_v2 = eval_i1k_t('imagenet_v2', 'test', 'i1k_i21k') |
|
c.evals.teacher_i1k_a = eval_i1k_t('imagenet_a', 'test', 'i1ka_i21k') |
|
c.evals.teacher_i1k_r = eval_i1k_t('imagenet_r', 'test', 'i1kr_i21k') |
|
c.evals.teacher_i1k_real = eval_i1k_t('imagenet2012_real', 'validation', 'i1k_i21k') |
|
c.evals.teacher_i1k_real.pp_fn = pp_eval_prof + pp_label_i1k.format(lbl='real_label') |
|
|
|
|
|
|
|
|
|
|
|
def get_dist(split, s): |
|
return dict( |
|
type='proj.distill.distance', |
|
pred=f'student_seqhw={s}_prof', |
|
data=dict(name='imagenet2012', split=mksplit(split)), |
|
pp_fn=pp_eval_both + '|keep("image", "prof")', |
|
log_percent=0.05, |
|
distances=({'kind': 'kl'}, {'kind': 'logsoftmax_euclidean'}, |
|
{'kind': 'agree', 'k': 1}, {'kind': 'agree', 'k': 5}), |
|
) |
|
for s in c.flexi.seqhw.v: |
|
c.evals[f'dist_minitrain_{s:02d}'] = get_dist('full[51_200:76_800]', s) |
|
c.evals[f'dist_val_{s:02d}'] = get_dist('full[25_600:51_200]', s) |
|
|
|
|
|
return c |
|
|