pranavSIT's picture
added pali inference
74e8f2f
# Copyright 2024 Big Vision Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=line-too-long
r"""Distill flexible-seqlen ViT on ImageNet-21k from (internal link) B/8.
This config is for reference, we never ran it on public infrastructure.
big_vision.trainers.proj.flexi.distill \
--config big_vision/configs/proj/flexivit/i21k_distill.py \
--workdir gs://[your_bucket]/big_vision/`date '+%m-%d_%H%M'` \
--config.total_epochs 90
"""
import big_vision.configs.common as bvcc
def get_config(arg=None):
"""Config for training."""
# 240px is nice because it's divisible by
# [240, 120, 80, 60, 48, 40, 30, 24, 20, 16, 15, 12, 10, 8, 6, 5, 4, 3, 2, 1]
c = bvcc.parse_arg(arg, runlocal=False, res=240)
c.seed = 0
c.total_epochs = 90
c.num_classes = 21843
c.init_head_bias = -10.0
c.loss = 'sigmoid_xent'
c.input = dict()
c.input.data = dict(
name='imagenet21k',
split='full[51200:]',
)
c.input.batch_size = 4096 if not c.runlocal else 8
c.input.shuffle_buffer_size = 250_000 if not c.runlocal else 25
pp_label_i21k = f'|onehot({c.num_classes})|keep("image", "prof", "labels")'
pp_label_i1k = '|onehot(1000, key="{lbl}", key_result="labels")|keep("image", "prof", "labels")'
c.input.pp = (
f'decode|inception_crop|flip_lr|copy("image", "prof")'
f'|resize({c.res})|value_range(-1, 1)'
f'|resize(224, outkey="prof")|value_range(-1, 1, key="prof")'
+ pp_label_i21k
)
pp_eval_both = (
'decode|copy("image", "prof")|'
f'|resize_small({c.res//7*8})|central_crop({c.res})|value_range(-1, 1)'
f'|resize_small(256, key="prof")|central_crop(224, key="prof")|value_range(-1, 1, key="prof")|'
)
pp_eval_student = (
f'decode|resize({c.res//7*8})|central_crop({c.res})|value_range(-1, 1)'
)
pp_eval_prof = (
'decode|resize(256)|central_crop(224)|value_range(-1, 1, outkey="prof")'
)
# Aggressive pre-fetching because our models here are small, so we not only
# can afford it, but we also need it for the smallest models to not be
# bottle-necked by the input pipeline. Play around with it for -L models tho.
c.input.prefetch = 8
c.prefetch_to_device = 4
c.log_training_steps = 50
c.ckpt_steps = 1000
# Model section
init = 'howto-i21k-B/8'
c.student_name = 'proj.flexi.vit'
c.student_init = init
c.student = dict(variant='B', pool_type='tok', patch_size=(8, 8))
c.teachers = ['prof'] # You could even add multiple.
c.prof_name = 'vit'
c.prof_init = init
c.prof = dict(variant='B/8', pool_type='tok')
# Define the model parameters which are flexible:
c.flexi = dict()
c.flexi.seqhw = dict(
# The settings to sample from. Corresponding patch-sizes at 240px:
# 48, 40, 30, 24, 20, 16, 15, 12, 10, 8
v=(5, 6, 8, 10, 12, 15, 16, 20, 24, 30),
# The probabilities/weights of them. Default uniform.
p=(1, 1, 1, 1, 1, 1, 1, 1, 1, 1),
)
# Distillation settings
c.distance = 'kl'
c.distance_kw = dict(t=1.0)
# Optimizer section
c.optax_name = 'scale_by_adam'
c.optax = dict(mu_dtype='bfloat16')
c.grad_clip_norm = 1.0
c.lr = 1e-4
c.wd = 1e-5
c.schedule = dict(warmup_steps=5000, decay_type='cosine')
c.mixup = dict(p=1.0)
####
# Preparing for evals
c.evals = {}
def mksplit(split):
if c.runlocal:
return split.split('[')[0] + '[:16]'
return split
####
# Student evals
# Evaluations on i21k itself.
def eval_i21k(s, split):
return dict(
type='classification',
pred=f'student_seqhw={s}',
data={**c.input.data, 'split': mksplit(split)},
pp_fn=pp_eval_student + pp_label_i21k,
loss_name=c.loss,
log_steps=5000, # Very fast O(seconds) so it's fine to run it often.
)
for s in c.flexi.seqhw.v:
c.evals[f'student_test{s:02d}'] = eval_i21k(s, 'full[:25_600]')
c.evals[f'student_val{s:02d}'] = eval_i21k(s, 'full[25_600:51_200]')
c.evals[f'student_minitrain{s:02d}'] = eval_i21k(s, 'full[51_200:76_800]')
# Evaluations on ImageNet1k variants by label-mapping.
def eval_i1k(s, dataset, split, lblmap):
return dict(
type='classification_with_labelmap',
pred=f'student_seqhw={s}',
data=dict(name=dataset, split=mksplit(split)),
pp_fn=pp_eval_student + pp_label_i1k.format(lbl='label'),
loss_name=c.loss,
log_steps=5000, # Very fast O(seconds) so it's fine to run it often.
label_mapping=lblmap,
)
for s in c.flexi.seqhw.v:
c.evals[f'student_i1k_val{s:02d}'] = eval_i1k(s, 'imagenet2012', 'validation', 'i1k_i21k')
c.evals[f'student_i1k_v2{s:02d}'] = eval_i1k(s, 'imagenet_v2', 'test', 'i1k_i21k')
c.evals[f'student_i1k_a{s:02d}'] = eval_i1k(s, 'imagenet_a', 'test', 'i1ka_i21k')
c.evals[f'student_i1k_r{s:02d}'] = eval_i1k(s, 'imagenet_r', 'test', 'i1kr_i21k')
c.evals[f'student_i1k_real{s:02d}'] = eval_i1k(s, 'imagenet2012_real', 'validation', 'i1k_i21k')
c.evals[f'student_i1k_real{s:02d}'].pp_fn = pp_eval_student + pp_label_i1k.format(lbl='real_label')
# TODO: add objectnet.
####
# Teacher evals
# Evaluations on i21k itself.
def eval_i21k_t(split):
return dict(
type='classification',
pred='prof',
data={**c.input.data, 'split': mksplit(split)},
pp_fn=pp_eval_prof + pp_label_i21k,
loss_name=c.loss,
log_steps=5000, # Very fast O(seconds) so it's fine to run it often.
)
c.evals.teacher_test = eval_i21k_t('full[:25_600]')
c.evals.teacher_val = eval_i21k_t('full[25_600:51_200]')
c.evals.teacher_minitrain = eval_i21k_t('full[51_200:76_800]')
# Evaluations on ImageNet1k variants by label-mapping.
def eval_i1k_t(dataset, split, lblmap):
return dict(
type='classification_with_labelmap',
pred='prof',
data=dict(name=dataset, split=mksplit(split)),
pp_fn=pp_eval_prof + pp_label_i1k.format(lbl='label'),
loss_name=c.loss,
log_percent=0.5, # Teacher is fixed, so eval just for plots.
label_mapping=lblmap,
)
c.evals.teacher_i1k_val = eval_i1k_t('imagenet2012', 'validation', 'i1k_i21k')
c.evals.teacher_i1k_v2 = eval_i1k_t('imagenet_v2', 'test', 'i1k_i21k')
c.evals.teacher_i1k_a = eval_i1k_t('imagenet_a', 'test', 'i1ka_i21k')
c.evals.teacher_i1k_r = eval_i1k_t('imagenet_r', 'test', 'i1kr_i21k')
c.evals.teacher_i1k_real = eval_i1k_t('imagenet2012_real', 'validation', 'i1k_i21k')
c.evals.teacher_i1k_real.pp_fn = pp_eval_prof + pp_label_i1k.format(lbl='real_label')
# TODO: add objectnet.
####
# Combined evals
def get_dist(split, s):
return dict(
type='proj.distill.distance',
pred=f'student_seqhw={s}_prof',
data=dict(name='imagenet2012', split=mksplit(split)),
pp_fn=pp_eval_both + '|keep("image", "prof")',
log_percent=0.05,
distances=({'kind': 'kl'}, {'kind': 'logsoftmax_euclidean'},
{'kind': 'agree', 'k': 1}, {'kind': 'agree', 'k': 5}),
)
for s in c.flexi.seqhw.v:
c.evals[f'dist_minitrain_{s:02d}'] = get_dist('full[51_200:76_800]', s)
c.evals[f'dist_val_{s:02d}'] = get_dist('full[25_600:51_200]', s)
# Few-shot evaluators not added for overkill reasons for now.
return c