pranavSIT's picture
added pali inference
74e8f2f
# Copyright 2024 Big Vision Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=line-too-long
r"""Pre-training flexible-seqlen ViT on ImageNet-21k following (internal link).
This config is for reference, we never ran it on public infrastructure.
big_vision.trainers.proj.flexi.train \
--config big_vision/configs/proj/flexivit/i21k_sup.py \
--workdir gs://[your_bucket]/big_vision/`date '+%m-%d_%H%M'` \
--config.total_epochs 90
"""
import big_vision.configs.common as bvcc
def get_config(arg=None):
"""Config for training."""
# 240px is nice because it's divisible by
# [240, 120, 80, 60, 48, 40, 30, 24, 20, 16, 15, 12, 10, 8, 6, 5, 4, 3, 2, 1]
c = bvcc.parse_arg(arg, runlocal=False, res=240)
c.seed = 0
c.total_epochs = 90
c.num_classes = 21843
c.init_head_bias = -10.0
c.loss = 'sigmoid_xent'
c.input = dict()
c.input.data = dict(
name='imagenet21k',
split='full[51200:]',
)
c.input.batch_size = 4096 if not c.runlocal else 8
c.input.shuffle_buffer_size = 250_000 if not c.runlocal else 25
pp_common = '|value_range(-1, 1)|onehot({onehot_args})|keep("image", "labels")'
pp_common_i21k = pp_common.format(onehot_args=f'{c.num_classes}')
pp_common_i1k = pp_common.format(onehot_args='1000, key="{lbl}", key_result="labels"')
c.input.pp = f'decode_jpeg_and_inception_crop({c.res})|flip_lr|randaug(2,10)' + pp_common_i21k
def pp_eval(res=c.res):
return f'decode|resize_small({res//7*8})|central_crop({res})'
# To continue using the near-defunct randaug op.
c.pp_modules = ['ops_general', 'ops_image', 'ops_text', 'archive.randaug']
# Aggressive pre-fetching because our models here are small, so we not only
# can afford it, but we also need it for the smallest models to not be
# bottle-necked by the input pipeline. Play around with it for -L models tho.
c.input.prefetch = 8
c.prefetch_to_device = 4
c.log_training_steps = 50
c.ckpt_steps = 1000
# Model section
c.model_name = 'proj.flexi.vit'
c.model = dict(
variant='B',
pool_type='tok',
posemb='learn',
# patch_size=(32, 32),
patch_size=(8, 8),
posemb_size=(7, 7),
seqhw=None, # Dynamic!
)
# Define the model parameters which are flexible:
c.flexi = dict()
c.flexi.seqhw = dict(
# The settings to sample from. Corresponding patch-sizes at 240px:
# 48, 40, 30, 24, 20, 16, 15, 12, 10, 8
v=(5, 6, 8, 10, 12, 15, 16, 20, 24, 30),
# The probabilities/weights of them. Default uniform.
p=(1, 1, 1, 1, 1, 1, 1, 1, 1, 1),
)
# Optimizer section
c.optax_name = 'scale_by_adam'
c.optax = dict(mu_dtype='bfloat16')
c.grad_clip_norm = 1.0
c.lr = 0.001
c.wd = 0.0001
c.schedule = dict(warmup_steps=10_000, decay_type='cosine')
c.mixup = dict(p=0.2, fold_in=None)
def mksplit(split):
if c.runlocal:
return split.split('[')[0] + '[:16]'
return split
# Evaluations on i21k itself.
def eval_i21k(s, split):
return dict(
type='classification',
pred=f'predict_seqhw={s}',
data={**c.input.data, 'split': mksplit(split)},
pp_fn=pp_eval() + pp_common_i21k,
loss_name=c.loss,
log_steps=5000, # Very fast O(seconds) so it's fine to run it often.
)
c.evals = {}
for s in c.flexi.seqhw.v:
c.evals[f'test{s:02d}'] = eval_i21k(s, 'full[:25_600]')
c.evals[f'val{s:02d}'] = eval_i21k(s, 'full[25_600:51_200]')
c.evals[f'train{s:02d}'] = eval_i21k(s, 'full[51_200:76_800]')
# Evaluations on ImageNet1k variants by label-mapping.
def eval_i1k(s, dataset, split, lblmap):
return dict(
type='classification_with_labelmap',
pred=f'predict_seqhw={s}',
data=dict(name=dataset, split=mksplit(split)),
pp_fn=pp_eval() + pp_common_i1k.format(lbl='label'),
loss_name=c.loss,
log_steps=5000, # Very fast O(seconds) so it's fine to run it often.
label_mapping=lblmap,
)
for s in c.flexi.seqhw.v:
c.evals[f'i1k_val{s:02d}'] = eval_i1k(s, 'imagenet2012', 'validation', 'i1k_i21k')
c.evals[f'i1k_v2{s:02d}'] = eval_i1k(s, 'imagenet_v2', 'test', 'i1k_i21k')
c.evals[f'i1k_a{s:02d}'] = eval_i1k(s, 'imagenet_a', 'test', 'i1ka_i21k')
c.evals[f'i1k_r{s:02d}'] = eval_i1k(s, 'imagenet_r', 'test', 'i1kr_i21k')
c.evals[f'i1k_real{s:02d}'] = eval_i1k(s, 'imagenet2012_real', 'validation', 'i1k_i21k')
c.evals[f'i1k_real{s:02d}'].pp_fn = pp_eval() + pp_common_i1k.format(lbl='real_label')
# TODO: add objectnet.
# Few-shot evaluators not added for overkill reasons for now.
return c