pranavSIT's picture
added pali inference
74e8f2f
# Copyright 2024 Big Vision Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=line-too-long
r"""PaliGemma transfer to OCR-VQA, see (internal link) for details and notes.
"""
import big_vision.configs.common as bvcc
from big_vision.configs.proj.paligemma.transfers.common import combine_and_keep_train, combine_and_keep_eval, TOKENIZER
def training_data(res, *, final_split, text_len=32):
"""Creates training data config.
See (internal link)
You can add more arguments beside `res`, but give them good defaults.
Args:
res: The requested image resolution (eg 224).
final_split: Train on all train+val data or train+val[20000:].
text_len: sequence length.
Returns:
The ConfigDict for the input section.
"""
# Note that the dataset is "unbatched" here, meaning each image_question pair
# is one example. So while there are ~800k training examples, there's only
# ~200k unique images, each one having on average 4 questions, and the
# questions are highly regular:
# - What is the title of this book?
# - What type of book is this? OR What is the genre of this book?
# - Who wrote this book? OR Who is the author of this book?
# - Is this book related to [GENRE]? OR Is this a [GENRE] book? "yes"
# - Same but with answer "no"
# So one obvious thing we could do in training is randomize the negative genre
# question more using a custom pp op.
c = bvcc.parse_arg('') # Just make a configdict without extra import.
c.data = dict(
name='ocrvqa_id',
split='train+val' if final_split else 'train + val[20_000:]', # Val is 100k, we don't need that much!
)
c.pp = '|'.join([
f'decode|resize({res}, antialias=True)|value_range(-1, 1)',
'strfmt("answer en {question}", outkey="prefix")',
'copy(inkey="answer", outkey="suffix")',
combine_and_keep_train(text_len),
])
return c
def add_eval(c, res, text_len=32, **kw):
"""OCR-VQA evaluators."""
pp = '|'.join([
f'decode|resize({res}, antialias=True)|value_range(-1, 1)',
'strfmt("answer en {question}", outkey="prefix")',
'copy(inkey="int_id", outkey="question_id")',
combine_and_keep_eval(text_len, keep=('answer', 'question_id')),
])
for freq, name, split in [
(1/8, 'minitrain', 'train[:5120]'), # To gauge memorization.
(1/4, 'minival', 'val[:20_000]'), # To tune hparams. SLOW!
(1.0, 'eval', 'test'), # Final number to report. Big => rare.
]:
c.evals[f'ocrvqa/{name}'] = dict(
type='proj.paligemma.transfers.vqa',
to_lower=True,
pred='decode', pred_kw={'max_decode_len': text_len},
data={**training_data(res, final_split=True, text_len=text_len).data, 'split': split},
log_percent=freq, skip_first=freq == 1, tokenizer=TOKENIZER, pp_fn=pp)
c.evals[f'ocrvqa/{name}'].update(kw)
def add_eval_pplx(c, res, text_len=32):
"""Perplexity evaluator to test runs before implementing the real deal."""
c_train = training_data(res, final_split=True, text_len=text_len) # Use mostly same settings as training.
for name, split in [
('minitrain', 'train[:5120]'), # To gauge memorization.
('minival', 'val[:20_000]'), # To tune hparams.
('eval', 'test'), # To compute final publishable scores.
]:
c.evals[f'ocrvqa/{name}/pplx'] = dict(
type='proj.paligemma.perplexity', pred='logits',
key='text', shift_labels=True,
log_percent=0.1, # Eval ~10x per run;
data={**c_train.data, 'split': split},
pp_fn=c_train.pp,
)
def sweep_best(add, arg=None):
"""Train with best hyper-params."""
c = bvcc.parse_arg(arg, final_split=False)
add(**bvcc.arg(res=224, **c), lr=3e-6)
add(**bvcc.arg(res=448, **c), lr=3e-6)
add(**bvcc.arg(res=896, **c), lr=1e-5)
sweep = sweep_best # Choose which sweep to run.
def get_config(arg=None):
"""Config for training."""
c = bvcc.parse_arg(arg, mode='xm', res=224, final_split=False)
c.input = training_data(c.res, final_split=c.final_split)
# Instead of epochs, you can also use `total_examples` or `total_steps`.
c.total_epochs = 3
c.input.batch_size = 128
c.optax_name = 'scale_by_adam'
c.optax = dict(b2=0.999)
c.lr = 3e-6
c.wd = 0.0
c.grad_clip_norm = 1.0
c.label_smoothing = 0.0
c.schedule = dict(decay_type='cosine', warmup_percent=0.05)
# Add evaluators.
c.evals = {}
add_eval(c, c.res, batch_size=256)
add_eval_pplx(c, c.res)
# Model section.
c.model_name = 'proj.paligemma.paligemma'
c.model = {}
c.model.img = dict(variant='So400m/14', pool_type='none', scan=True)
c.model.llm = dict(vocab_size=256_000 + 1024 + 128, dropout=0.0)
c.model_init = f'pt_{c.res}'
# FSDP strategy.
c.mesh = [('data', -1)]
c.sharding_strategy = [('.*', 'fsdp(axis="data")')]
c.sharding_rules = [('act_batch', ('data',))]
# These probably do not need any change/tuning
c.input.shuffle_buffer_size = 50_000
c.log_training_steps = 50
c.ckpt_steps = 1_000
c.pp_modules = ['ops_general', 'ops_image', 'ops_text', 'proj.paligemma.ops']
# Update configs for quicker local runs and avoid swapping.
if c.mode in ('runlocal', 'mock'):
c.input.shuffle_buffer_size = None
for ev in c.evals.values():
ev.data.split = ev.data.split.split('[')[0] + '[:16]'
if c.mode == 'runlocal':
c.log_training_steps = 1
c.input.batch_size = 2
c.seed = 0
return c
def metrics(arg=None): # pylint: disable=unused-argument
m = ['training_loss']
for split in ('eval', 'minival', 'minitrain'):
m.append(f'ocrvqa/{split}/acc')
return m