|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
r"""A config for training a UViM stage II model for the depth task. |
|
""" |
|
|
|
import big_vision.configs.common as bvcc |
|
from ml_collections import ConfigDict |
|
|
|
|
|
VTT_MODELS = { |
|
'base': dict(num_layers=12, num_heads=12, mlp_dim=3072, emb_dim=768), |
|
'large': dict(num_layers=24, num_heads=16, mlp_dim=4096, emb_dim=1024), |
|
} |
|
|
|
VQVAE_MODELS = { |
|
'base': dict(enc_depth=6, dec_depth=12, num_heads=12, mlp_dim=3072, width=768), |
|
} |
|
|
|
|
|
RES = 512 |
|
PATCH_SIZE = 16 |
|
LABEL_RES = 512 |
|
LABEL_PATCH_SIZE = 16 |
|
QUANTIZATION_BINS = 256 |
|
|
|
MIN_DEPTH = 1e-3 |
|
MAX_DEPTH = 10 |
|
|
|
|
|
def get_config(arg='split=final'): |
|
"""Config for training.""" |
|
arg = bvcc.parse_arg(arg, split='final', runlocal=False, singlehost=False) |
|
config = ConfigDict() |
|
|
|
config.input = {} |
|
config.input.pp = ( |
|
f'decode|nyu_depth|' |
|
f'randu("fliplr")|det_fliplr(key="image")|det_fliplr(key="labels")|' |
|
f'inception_box|crop_box(key="image")|crop_box(key="labels")|' |
|
f'resize({RES})|' |
|
f'resize({LABEL_RES},inkey="image",outkey="image_ctx")|' |
|
f'resize({LABEL_RES},key="labels",method="nearest")|' |
|
f'value_range(-1,1)|' |
|
f'value_range(-1,1,inkey="image_ctx",outkey="image_ctx")|' |
|
f'keep("image","image_ctx","labels")' |
|
) |
|
pp_eval = ( |
|
f'decode|nyu_depth|' |
|
f'nyu_eval_crop|' |
|
f'resize({RES})|' |
|
f'resize({LABEL_RES},inkey="image",outkey="image_ctx")|' |
|
f'resize({LABEL_RES},key="labels",method="nearest")|' |
|
f'value_range(-1,1)|' |
|
f'value_range(-1,1,inkey="image_ctx",outkey="image_ctx")|' |
|
f'keep("image","image_ctx","labels")' |
|
) |
|
pp_predict = ( |
|
f'nyu_depth|' |
|
f'nyu_eval_crop|copy("labels","ground_truth")|' |
|
f'resize({RES})|' |
|
f'resize({LABEL_RES},inkey="image",outkey="image_ctx")|' |
|
f'value_range(-1,1)|' |
|
f'value_range(-1,1,inkey="image_ctx",outkey="image_ctx")|' |
|
f'keep("image","image_ctx","ground_truth")' |
|
) |
|
|
|
config.input.data = dict(name='nyu_depth_v2', split='train') |
|
config.input.batch_size = 512 |
|
config.input.shuffle_buffer_size = 50_000 |
|
|
|
config.total_epochs = 50 |
|
|
|
config.log_training_steps = 50 |
|
config.ckpt_steps = 1000 |
|
config.keep_ckpt_steps = 5000 |
|
config.prefetch_to_device = 2 |
|
config.seed = 0 |
|
|
|
|
|
config.optax_name = 'big_vision.scale_by_adafactor' |
|
config.optax = dict(beta2_cap=0.95) |
|
config.optax.clipping_threshold = None |
|
|
|
config.lr = 0.001 |
|
config.wd = 0.000001 |
|
config.lr_mults = ( |
|
('pos_embedding_encoder.*', 0.1), |
|
('EmbedPatches.*', 0.1), |
|
('encoder.*', 0.1), |
|
('decoder.*', 1.0) |
|
) |
|
config.schedule = dict(decay_type='cosine', warmup_steps=4_000) |
|
|
|
|
|
config.oracle = ConfigDict() |
|
config.oracle.min_depth = MIN_DEPTH |
|
config.oracle.max_depth = MAX_DEPTH |
|
config.oracle.task = 'proj.uvim.depth_task' |
|
config.oracle.model_init = 'gs://big_vision/uvim/depth_stageI_params.npz' |
|
config.oracle.model_name = 'proj.uvim.vit' |
|
config.oracle.model = ConfigDict(VQVAE_MODELS['base']) |
|
config.oracle.model.input_size = (LABEL_RES, LABEL_RES) |
|
config.oracle.model.patch_size = (LABEL_PATCH_SIZE, LABEL_PATCH_SIZE) |
|
config.oracle.model.code_len = 256 |
|
config.oracle.model.dict_size = 4096 |
|
config.oracle.model.codeword_dim = 768 |
|
config.oracle.model.with_encoder_ctx = True |
|
config.oracle.model.with_decoder_ctx = True |
|
config.oracle.model.code_dropout = 'random' |
|
config.oracle.model.bottleneck_resize = True |
|
config.oracle.model.inputs = { |
|
'depth': (QUANTIZATION_BINS, LABEL_PATCH_SIZE**2,), |
|
} |
|
config.oracle.model.outputs = config.oracle.model.inputs |
|
|
|
|
|
config.model_name = 'proj.uvim.vtt' |
|
|
|
config.model_init = {'encoder': 'howto-i21k-L/16'} |
|
config.model = ConfigDict(VTT_MODELS['large']) |
|
config.model.patches = ConfigDict({'size': (PATCH_SIZE, PATCH_SIZE)}) |
|
config.model.vocab_size = config.oracle.model.dict_size + 1 |
|
config.model.posemb_type = 'learn' |
|
config.model.input_size = (RES, RES) |
|
config.model.seq_len = config.oracle.model.get_ref('code_len') |
|
config.model.zero_decoder_seq = False |
|
|
|
|
|
config.evals = {} |
|
config.evals.val = ConfigDict() |
|
config.evals.val.type = 'proj.uvim.compute_mean' |
|
config.evals.val.pred = 'validation' |
|
config.evals.val.data = {**config.input.data} |
|
config.evals.val.data.split = 'validation' |
|
config.evals.val.pp_fn = pp_eval |
|
config.evals.val.log_steps = 1000 |
|
|
|
base = { |
|
'type': 'proj.uvim.nyu_depth', |
|
'dataset': config.input.data.name, |
|
'pp_fn': pp_predict, |
|
'log_steps': 2000, |
|
'min_depth': MIN_DEPTH, |
|
'max_depth': MAX_DEPTH, |
|
} |
|
config.evals.nyu_depth_val = dict(**base, split='validation') |
|
|
|
if arg.singlehost: |
|
config.input.batch_size = 32 |
|
config.total_epochs = 20 |
|
elif arg.runlocal: |
|
config.oracle.model_init = '/tmp/checkpoint.npz' |
|
config.model_init = {'encoder': '/tmp/enc_checkpoint.npz'} |
|
config.evals = {} |
|
config.input.batch_size = 1 |
|
config.input.shuffle_buffer_size = 10 |
|
return config |