|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
r"""A config for training a UViM stage I model for the depth task. |
|
""" |
|
|
|
import itertools |
|
import big_vision.configs.common as bvcc |
|
import ml_collections as mlc |
|
|
|
|
|
QUANTIZATION_BINS = 256 |
|
|
|
MIN_DEPTH = 1e-3 |
|
MAX_DEPTH = 10 |
|
|
|
|
|
def get_config(arg='res=512,patch_size=16'): |
|
"""Config for training label compression on NYU depth v2.""" |
|
arg = bvcc.parse_arg(arg, res=512, patch_size=16, |
|
runlocal=False, singlehost=False) |
|
config = mlc.ConfigDict() |
|
|
|
config.task = 'proj.uvim.depth_task' |
|
|
|
config.input = {} |
|
config.input.data = dict(name='nyu_depth_v2', split='train) |
|
|
|
config.input.batch_size = 1024 |
|
config.input.shuffle_buffer_size = 25_000 |
|
|
|
config.total_epochs = 200 |
|
|
|
config.input.pp = ( |
|
f'decode|nyu_depth|' |
|
f'randu("fliplr")|det_fliplr(key="image")|det_fliplr(key="labels")|' |
|
f'inception_box|crop_box(key="image")|crop_box(key="labels")|' |
|
f'resize({arg.res})|resize({arg.res},key="labels",method="nearest")|' |
|
f'value_range(-1, 1)|keep("image","labels")' |
|
) |
|
|
|
pp_eval = ( |
|
f'decode|nyu_depth|nyu_eval_crop|' |
|
f'resize({arg.res})|resize({arg.res},key="labels",method="nearest")|' |
|
f'value_range(-1, 1)|keep("image","labels")' |
|
) |
|
|
|
# There are no image IDs in TFDS, so hand through the ground truth for eval. |
|
pp_pred = ( |
|
f'nyu_depth|nyu_eval_crop|copy("labels","ground_truth")|' |
|
f'resize({arg.res})|resize({arg.res},key="labels",method="nearest")|' |
|
f'value_range(-1, 1)|' |
|
f'keep("image","labels","ground_truth")' |
|
) |
|
|
|
config.log_training_steps = 50 |
|
config.ckpt_steps = 1000 |
|
config.keep_ckpt_steps = 20_000 |
|
|
|
# Model section |
|
config.min_depth = MIN_DEPTH |
|
config.max_depth = MAX_DEPTH |
|
config.model_name = 'proj.uvim.vit' |
|
config.model = mlc.ConfigDict() |
|
config.model.input_size = (arg.res, arg.res) |
|
config.model.patch_size = (arg.patch_size, arg.patch_size) |
|
config.model.code_len = 256 |
|
config.model.width = 768 |
|
config.model.enc_depth = 6 |
|
config.model.dec_depth = 12 |
|
config.model.mlp_dim = 3072 |
|
config.model.num_heads = 12 |
|
config.model.dict_size = 4096 # Number of words in dict. |
|
config.model.codeword_dim = 768 |
|
config.model.dict_momentum = 0.995 # Momentum for dict. learning. |
|
config.model.with_encoder_ctx = True |
|
config.model.with_decoder_ctx = True |
|
config.model.code_dropout = 'random' |
|
config.model.bottleneck_resize = True |
|
config.model.inputs = { |
|
'depth': (QUANTIZATION_BINS, arg.patch_size**2), |
|
} |
|
config.model.outputs = config.model.inputs |
|
|
|
# VQVAE-specific params. |
|
config.freeze_dict = False # Will freeze a dict. inside VQ-VAE model. |
|
config.w_commitment = 0.0 |
|
|
|
# Optimizer section |
|
config.optax_name = 'big_vision.scale_by_adafactor' |
|
config.optax = dict(beta2_cap=0.95) |
|
|
|
config.lr = 1e-3 |
|
config.wd = 1e-5 |
|
config.schedule = dict(decay_type='cosine', warmup_steps=4_000) |
|
config.grad_clip_norm = 1.0 |
|
|
|
# Evaluation section |
|
config.evals = {} |
|
config.evals.val = mlc.ConfigDict() |
|
config.evals.val.type = 'proj.uvim.compute_mean' |
|
config.evals.val.pred = 'validation' |
|
config.evals.val.data = {**config.input.data} |
|
config.evals.val.data.split = 'validation' |
|
config.evals.val.pp_fn = pp_eval |
|
config.evals.val.log_steps = 250 |
|
|
|
base = { |
|
'type': 'proj.uvim.nyu_depth', |
|
'dataset': config.input.data.name, |
|
'pp_fn': pp_pred, |
|
'log_steps': 2000, |
|
'min_depth': MIN_DEPTH, |
|
'max_depth': MAX_DEPTH, |
|
} |
|
config.evals.nyu_depth_val = dict(**base, split='validation') |
|
|
|
config.seed = 0 |
|
|
|
if arg.singlehost: |
|
config.input.batch_size = 128 |
|
config.total_epochs = 50 |
|
elif arg.runlocal: |
|
config.input.batch_size = 16 |
|
config.input.shuffle_buffer_size = 10 |
|
config.log_training_steps = 5 |
|
config.model.enc_depth = 1 |
|
config.model.dec_depth = 1 |
|
config.evals.val.data.split = 'validation[:16]' |
|
config.evals.val.log_steps = 20 |
|
|
|
return config |