pranavSIT's picture
added pali inference
74e8f2f
# Copyright 2024 Big Vision Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""A version of ViT with flexible seqlen ((internal link))."""
from typing import Optional, Sequence
from absl import logging
from big_vision import utils
from big_vision.models import common
from big_vision.models import vit
import flax.linen as nn
import jax
import jax.numpy as jnp
import numpy as np
import tensorflow as tf
def resample_patchemb(old, new_hw):
"""Resample the weights of the patch embedding kernel to target resolution.
We resample the patch embedding kernel by approximately inverting the effect
of patch resizing. Colab with detailed explanation:
(internal link)
With this resizing, we can for example load a B/8 filter into a B/16 model
and, on 2x larger input image, the result will match.
See (internal link)
Args:
old: original parameter to be resized.
new_hw: target shape (height, width)-only.
Returns:
Resized patch embedding kernel.
"""
assert len(old.shape) == 4, "Four dimensions expected"
assert len(new_hw) == 2, "New shape should only be hw"
if tuple(old.shape[:2]) == tuple(new_hw):
return old
logging.info("FlexiViT: resize embedding %s to %s", old.shape, new_hw)
def resize(x_np, new_shape):
x_tf = tf.constant(x_np)[None, ..., None]
# NOTE: we are using tf.image.resize here to match the resize operations in
# the data preprocessing pipeline.
x_upsampled = tf.image.resize(
x_tf, new_shape, method="bilinear")[0, ..., 0].numpy()
return x_upsampled
def get_resize_mat(old_shape, new_shape):
mat = []
for i in range(np.prod(old_shape)):
basis_vec = np.zeros(old_shape)
basis_vec[np.unravel_index(i, old_shape)] = 1.
mat.append(resize(basis_vec, new_shape).reshape(-1))
return np.stack(mat).T
resize_mat = get_resize_mat(old.shape[:2], new_hw)
resize_mat_pinv = np.linalg.pinv(resize_mat.T)
def resample_kernel(kernel):
resampled_kernel = resize_mat_pinv @ kernel.reshape(-1)
return resampled_kernel.reshape(new_hw)
v_resample_kernel = jax.vmap(jax.vmap(resample_kernel, 2, 2), 3, 3)
return v_resample_kernel(old)
class Patchify(nn.Module):
"""As a class just to match param names with original ViT."""
patch_size: Sequence[int] = (32, 32)
width: int = 768
seqhw: Optional[int] = None
@nn.compact
def __call__(self, image, seqhw=None):
n, h, w, c = image.shape # pylint: disable=unused-variable
w_emb = self.param(
"kernel", nn.initializers.normal(stddev=1/np.sqrt(self.width)),
(*self.patch_size, c, self.width), image.dtype)
b_emb = self.param("bias", nn.initializers.zeros, self.width, image.dtype)
# Compute required patch-size to reach `seqhw` given `image` size.
seqhw = seqhw or self.seqhw
if seqhw is None and self.is_initializing():
patch_size = self.patch_size
else:
patch_size = tuple(np.array((h, w)) // np.array((seqhw, seqhw)))
if patch_size != self.patch_size:
w_emb = resample_patchemb(old=w_emb, new_hw=patch_size)
x = jax.lax.conv_general_dilated(
image, w_emb, window_strides=patch_size, padding="VALID",
dimension_numbers=("NHWC", "HWIO", "NHWC"))
return x + b_emb
class _Model(nn.Module):
"""ViT model."""
num_classes: int
patch_size: Sequence[int] = (32, 32)
posemb_size: Sequence[int] = (7, 7)
width: int = 768
depth: int = 12
mlp_dim: Optional[int] = None # Defaults to 4x input dim
num_heads: int = 12
posemb: str = "learn" # Can also be "sincos2d"
pool_type: str = "gap" # Can also be "map" or "tok"
head_zeroinit: bool = True
seqhw: Optional[int] = None
@nn.compact
def __call__(self, image, *, seqhw=None, train=False):
out = {}
x = out["stem"] = Patchify(
self.patch_size, self.width, self.seqhw, name="embedding")(image, seqhw)
# == Flattening + posemb
n, h, w, c = x.shape
x = jnp.reshape(x, [n, h * w, c])
pos_emb = vit.get_posemb(
self, self.posemb, self.posemb_size, c, "pos_embedding", x.dtype)
if pos_emb.shape[1] != h * w:
pos_emb = jnp.reshape(pos_emb, (1, *self.posemb_size, c))
pos_emb = jax.image.resize(pos_emb, (1, h, w, c), "linear")
pos_emb = jnp.reshape(pos_emb, (1, h * w, c))
x = out["with_posemb"] = x + pos_emb
# == Optional [cls] token
if self.pool_type == "tok":
cls = self.param("cls", nn.initializers.zeros, (1, 1, c), x.dtype)
x = jnp.concatenate([jnp.tile(cls, [n, 1, 1]), x], axis=1)
# == Encoder
n, l, c = x.shape # pylint: disable=unused-variable
x, out["encoder"] = vit.Encoder(
depth=self.depth,
mlp_dim=self.mlp_dim,
num_heads=self.num_heads,
name="Transformer")(x)
encoded = out["encoded"] = x
if self.pool_type == "map":
x = out["head_input"] = vit.MAPHead(
num_heads=self.num_heads, mlp_dim=self.mlp_dim)(x)
elif self.pool_type == "gap":
x = out["head_input"] = jnp.mean(x, axis=1)
elif self.pool_type == "tok":
x = out["head_input"] = x[:, 0]
encoded = encoded[:, 1:]
else:
raise ValueError(f"Unknown pool type: '{self.pool_type}'")
x_2d = jnp.reshape(encoded, [n, h, w, -1])
out["pre_logits_2d"] = x_2d
out["pre_logits"] = x
if self.num_classes:
kw = {"kernel_init": nn.initializers.zeros} if self.head_zeroinit else {}
head = nn.Dense(self.num_classes, name="head", **kw)
x_2d = out["logits_2d"] = head(x_2d)
x = out["logits"] = head(x)
return x, out
def Model(num_classes, *, variant=None, **kw): # pylint: disable=invalid-name
"""Factory function, because linen really don't like what I'm doing!"""
return _Model(num_classes, **{**vit.decode_variant(variant), **kw})
def load(init_params, init_file, model_cfg, dont_load=()): # pylint: disable=invalid-name because we had to CamelCase above.
"""Load init from checkpoint, both old model and this one. +Hi-res posemb."""
init_file = {**vit.VANITY_NAMES, **VANITY_NAMES}.get(init_file, init_file)
restored_params = utils.load_params(init_file)
restored_params = vit.fix_old_checkpoints(restored_params)
# Potentially resize the position embedings if seqlen differs.
restored_params["pos_embedding"] = vit.resample_posemb(
old=restored_params["pos_embedding"],
new=init_params["pos_embedding"])
# Potentially resize the patch embedding kernel.
old_patchemb = restored_params["embedding"]["kernel"]
restored_params["embedding"]["kernel"] = resample_patchemb(
old=old_patchemb, new_hw=model_cfg.patch_size)
# possibly use the random init for some of the params (such as, the head).
restored_params = common.merge_params(restored_params, init_params, dont_load)
return restored_params
# Shortcut names for some canonical paper checkpoints:
VANITY_NAMES = {
# pylint: disable=line-too-long
"FlexiViT-L i1k": "gs://big_vision/flexivit/flexivit_l_i1k.npz",
"FlexiViT-B i1k": "gs://big_vision/flexivit/flexivit_b_i1k.npz",
"FlexiViT-S i1k": "gs://big_vision/flexivit/flexivit_s_i1k.npz",
"FlexiViT-B i21k 90ep": "gs://big_vision/flexivit/flexivit_b_i21k_90ep.npz",
"FlexiViT-B i21k 300ep": "gs://big_vision/flexivit/flexivit_b_i21k_300ep.npz",
"FlexiViT-B i21k 1000ep": "gs://big_vision/flexivit/flexivit_b_i21k_1000ep.npz",
"ViT-B/16 i21k": "gs://big_vision/flexivit/vit_b16_i21k_300ep.npz",
"ViT-B/30 i21k": "gs://big_vision/flexivit/vit_b30_i21k_300ep.npz",
# pylint: enable=line-too-long
}