|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Training loop for GIVT-style autoregressive and masked models.""" |
|
|
|
|
|
import functools |
|
import importlib |
|
import multiprocessing.pool |
|
import os |
|
|
|
from absl import app |
|
from absl import flags |
|
from absl import logging |
|
import big_vision.evaluators.common as eval_common |
|
import big_vision.input_pipeline as input_pipeline |
|
from big_vision.models.proj.givt import parallel_decode |
|
import big_vision.models.proj.givt.decode as softar_decode |
|
import big_vision.optax as bv_optax |
|
import big_vision.sharding as bv_sharding |
|
import big_vision.trainers.proj.givt.utils as trainer_utils |
|
from big_vision.trainers.proj.uvim import panoptic_task |
|
import big_vision.utils as u |
|
from clu import parameter_overview |
|
import flax |
|
import jax |
|
from jax.experimental import mesh_utils |
|
from jax.experimental import multihost_utils |
|
from jax.experimental.array_serialization import serialization as array_serial |
|
import jax.numpy as jnp |
|
from ml_collections import config_flags |
|
import numpy as np |
|
import optax |
|
import tensorflow as tf |
|
|
|
from tensorflow.io import gfile |
|
|
|
|
|
|
|
|
|
config_flags.DEFINE_config_file( |
|
"config", None, "Training configuration.", lock_config=True) |
|
|
|
flags.DEFINE_string("workdir", default=None, help="Work unit directory.") |
|
flags.DEFINE_boolean("cleanup", default=False, |
|
help="Delete workdir (only) after successful completion.") |
|
|
|
|
|
jax.config.parse_flags_with_absl() |
|
|
|
|
|
|
|
|
|
jax.config.update("jax_transfer_guard", "disallow") |
|
|
|
jax.config.update("jax_threefry_partitionable", True) |
|
|
|
|
|
NamedSharding = jax.sharding.NamedSharding |
|
P = jax.sharding.PartitionSpec |
|
|
|
|
|
def main(argv): |
|
del argv |
|
|
|
jax.distributed.initialize() |
|
|
|
|
|
tf.config.set_visible_devices([], "GPU") |
|
|
|
config = flags.FLAGS.config |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
workdir = flags.FLAGS.workdir |
|
logging.info( |
|
f"\u001b[33mHello from process {jax.process_index()} holding " |
|
f"{jax.local_device_count()}/{jax.device_count()} devices and " |
|
f"writing to workdir {workdir}.\u001b[0m") |
|
|
|
save_ckpt_path = None |
|
if workdir: |
|
gfile.makedirs(workdir) |
|
save_ckpt_path = os.path.join(workdir, "checkpoint.bv") |
|
|
|
|
|
pool = multiprocessing.pool.ThreadPool() |
|
|
|
|
|
for m in config.get("pp_modules", ["ops_general", "ops_image", "ops_text", |
|
"proj.uvim.pp_ops", "proj.givt.pp_ops"]): |
|
importlib.import_module(f"big_vision.pp.{m}") |
|
|
|
|
|
xid, wid = -1, -1 |
|
def info(s, *a): |
|
logging.info("\u001b[33mNOTE\u001b[0m: " + s, *a) |
|
def write_note(note): |
|
if jax.process_index() == 0: |
|
info("%s", note) |
|
|
|
mw = u.BigVisionMetricWriter(xid, wid, workdir, config) |
|
|
|
|
|
u.chrono.inform(measure=mw.measure, write_note=write_note) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
config_mesh = config.get("mesh", [("data", jax.device_count())]) |
|
|
|
|
|
sharding_rules = config.get("sharding_rules", [("act_batch", "data")]) |
|
|
|
mesh_axes, mesh_size = tuple(zip(*config_mesh)) |
|
|
|
|
|
mesh_size = np.array(jax.devices()).reshape(mesh_size).shape |
|
|
|
device_mesh = mesh_utils.create_device_mesh(mesh_size) |
|
|
|
|
|
|
|
|
|
|
|
devices_flat = device_mesh.flatten() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
write_note("Initializing train dataset...") |
|
batch_size = config.input.batch_size |
|
if batch_size % jax.device_count() != 0: |
|
raise ValueError(f"Batch size ({batch_size}) must " |
|
f"be divisible by device number ({jax.device_count()})") |
|
info("Global batch size %d on %d hosts results in %d local batch size. With " |
|
"%d dev per host (%d dev total), that's a %d per-device batch size.", |
|
batch_size, jax.process_count(), batch_size // jax.process_count(), |
|
jax.local_device_count(), jax.device_count(), |
|
batch_size // jax.device_count()) |
|
|
|
train_ds, ntrain_img = input_pipeline.training(config.input) |
|
|
|
total_steps = u.steps("total", config, ntrain_img, batch_size) |
|
def get_steps(name, default=ValueError, cfg=config): |
|
return u.steps(name, cfg, ntrain_img, batch_size, total_steps, default) |
|
|
|
u.chrono.inform(total_steps=total_steps, global_bs=batch_size, |
|
steps_per_epoch=ntrain_img / batch_size) |
|
|
|
info("Running for %d steps, that means %f epochs", |
|
total_steps, total_steps * batch_size / ntrain_img) |
|
|
|
|
|
n_prefetch = config.get("prefetch_to_device", 1) |
|
train_iter = input_pipeline.start_global(train_ds, devices_flat, n_prefetch) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
write_note(f"Creating {config.vae.model_name} model...") |
|
vae_mod = importlib.import_module( |
|
f"big_vision.models.{config.vae.model_name}") |
|
vae = vae_mod.Model(**config.vae.get("model", {})) |
|
|
|
write_note(f"Creating {config.model_name} model...") |
|
model_mod = importlib.import_module(f"big_vision.models.{config.model_name}") |
|
model_config = config.get("model", {}) |
|
model = model_mod.Model(**model_config) |
|
|
|
if config.get("adaptor_name"): |
|
write_note(f"Creating {config.adaptor_name} model...") |
|
adaptor_mod = importlib.import_module( |
|
f"big_vision.models.{config.adaptor_name}") |
|
adaptor = adaptor_mod.Model(num_channels=model_config.out_dim, |
|
**config.adaptor.model) |
|
else: |
|
adaptor = None |
|
|
|
def init(rng): |
|
def _get_dummy_input(input_name, dtype=jnp.int64): |
|
if input_name in train_ds.element_spec: |
|
return jnp.zeros(train_ds.element_spec[input_name].shape, dtype=dtype) |
|
return None |
|
|
|
dummy_img = _get_dummy_input("image", dtype=jnp.float32) |
|
dummy_labels = _get_dummy_input("labels") |
|
dummy_cond_img = _get_dummy_input("cond_image", dtype=jnp.float32) |
|
local_batch_size = dummy_img.shape[0] |
|
|
|
code_shape = ( |
|
local_batch_size, model_config.seq_len, model_config.out_dim) |
|
dummy_code = jnp.zeros(code_shape, jnp.float32) |
|
|
|
input_mask = model.get_input_mask_training( |
|
jax.random.PRNGKey(0), (local_batch_size, model_config.seq_len) |
|
) |
|
params = model.init(rng, dummy_code, dummy_labels, image=dummy_cond_img, |
|
input_mask=input_mask)["params"] |
|
|
|
if adaptor is not None: |
|
_, rng_adaptor = jax.random.split(rng) |
|
adaptor_variables = adaptor.init(rng_adaptor, dummy_code) |
|
params_adaptor = flax.core.unfreeze(adaptor_variables["params"]) |
|
params["params_adaptor"] = params_adaptor |
|
|
|
return params |
|
|
|
rng = jax.random.PRNGKey(u.put_cpu(config.get("seed", 0))) |
|
|
|
write_note("Inferring parameter shapes...") |
|
rng, rng_init = jax.random.split(rng) |
|
params_shape = jax.eval_shape(init, rng_init) |
|
|
|
write_note("Inferring optimizer state shapes...") |
|
tx, sched_fns = bv_optax.make(config, params_shape, sched_kw=dict( |
|
total_steps=total_steps, batch_size=batch_size, data_size=ntrain_img)) |
|
opt_shape = jax.eval_shape(tx.init, params_shape) |
|
|
|
sched_fns_cpu = [u.jit_cpu()(sched_fn) for sched_fn in sched_fns] |
|
|
|
|
|
|
|
assert "model_init" in config.vae |
|
params_vae = vae_mod.load(None, config.vae.model_init, |
|
**config.vae.get("model_load", {})) |
|
|
|
def vae_encode(images, rng=None, reparametrize=True): |
|
mu, logvar = vae.apply({"params": params_vae}, images, method=vae.encode) |
|
if reparametrize: |
|
assert rng is not None and "dropout" in rng |
|
return vae.apply({"params": params_vae}, mu, logvar, |
|
method=vae.reparametrize, rngs=rng) |
|
return mu |
|
|
|
if jax.process_index() == 0: |
|
num_params = sum(np.prod(p.shape) for p in jax.tree_leaves(params_shape)) |
|
mw.measure("num_params", num_params) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
write_note("Creating device mesh...") |
|
mesh = jax.sharding.Mesh(device_mesh, mesh_axes) |
|
repl_sharding = jax.sharding.NamedSharding(mesh, P()) |
|
|
|
write_note("Inferring shardings...") |
|
train_state_shape = {"params": params_shape, "opt": opt_shape} |
|
|
|
strategy = config.get("sharding_strategy", [(".*", "replicate")]) |
|
train_state_sharding = bv_sharding.infer_sharding( |
|
train_state_shape, strategy=strategy, mesh=mesh) |
|
|
|
write_note("Transferring train_state to devices...") |
|
|
|
rng_init = u.reshard(rng_init, repl_sharding) |
|
|
|
|
|
params = jax.jit(init, out_shardings=train_state_sharding["params"])(rng_init) |
|
opt = jax.jit(tx.init, out_shardings=train_state_sharding["opt"])(params) |
|
|
|
rng, rng_loop = jax.random.split(rng, 2) |
|
rng_loop = u.reshard(rng_loop, repl_sharding) |
|
del rng |
|
|
|
|
|
|
|
train_state = {"params": params, "opt": opt} |
|
del params, opt |
|
|
|
write_note("Logging parameter overview...") |
|
parameter_overview.log_parameter_overview( |
|
train_state["params"], msg="Init params", |
|
include_stats="global", jax_logging_process=0) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def loss_fn(params, images, labels, cond_images, rng): |
|
rng, rng_dropout = jax.random.split(rng, 2) |
|
rng, rng_mask = jax.random.split(rng, 2) |
|
_, rng_droplabels = jax.random.split(rng, 2) |
|
|
|
rng_dropout = {"dropout": rng_dropout} |
|
|
|
sequence = vae_encode(images, rng_dropout) |
|
if adaptor is not None: |
|
|
|
sequence = adaptor.apply({"params": params["params_adaptor"]}, |
|
sequence, method=adaptor.forward) |
|
|
|
b, s, _ = sequence.shape |
|
|
|
input_mask = model.get_input_mask_training(rng_mask, (b, s)) |
|
drop_labels = model.get_drop_labels(rng_droplabels, batch_size=b) |
|
|
|
_, pdf = model.apply( |
|
{"params": params}, sequence, labels, |
|
image=cond_images, |
|
train=True, |
|
input_mask=input_mask, |
|
drop_labels=drop_labels, |
|
rngs=rng_dropout) |
|
|
|
|
|
nll = -pdf.log_prob(sequence) |
|
metrics = {"nll": nll} |
|
if input_mask is not None: |
|
metrics["fraction_masked_out"] = input_mask.astype(jnp.float32).mean( |
|
axis=1 |
|
) |
|
if nll.ndim == 3: |
|
input_mask = input_mask[:, :, None] |
|
|
|
|
|
|
|
nll = jnp.where(input_mask, nll, 0.0) |
|
|
|
|
|
|
|
loss = nll.mean(where=input_mask) |
|
else: |
|
loss = nll.mean() |
|
|
|
return loss, metrics |
|
|
|
@functools.partial( |
|
jax.jit, |
|
donate_argnums=(0,), |
|
out_shardings=(train_state_sharding, repl_sharding)) |
|
def update_fn(train_state, rng, batch): |
|
"""Update step.""" |
|
|
|
images = batch["image"] |
|
labels, cond_images = batch.get("labels"), batch.get("cond_image") |
|
|
|
step_count = bv_optax.get_count(train_state["opt"], jittable=True) |
|
rng = jax.random.fold_in(rng, step_count) |
|
|
|
measurements = {} |
|
|
|
|
|
_, rng_model = jax.random.split(rng, 2) |
|
params, opt = train_state["params"], train_state["opt"] |
|
|
|
(loss, metrics), grads = jax.value_and_grad(loss_fn, has_aux=True)( |
|
params, images, labels, cond_images, rng_model) |
|
updates, opt = tx.update(grads, opt, params) |
|
params = optax.apply_updates(params, updates) |
|
train_state = {"params": params, "opt": opt} |
|
|
|
measurements["training_loss"] = loss |
|
gs = jax.tree_leaves(bv_optax.replace_frozen(config.schedule, grads, 0.)) |
|
measurements["l2_grads"] = jnp.sqrt(sum([jnp.vdot(g, g) for g in gs])) |
|
ps = jax.tree_leaves(params) |
|
measurements["l2_params"] = jnp.sqrt(sum([jnp.vdot(p, p) for p in ps])) |
|
us = jax.tree_leaves(updates) |
|
measurements["l2_updates"] = jnp.sqrt(sum([jnp.vdot(u, u) for u in us])) |
|
|
|
if adaptor is not None: |
|
ps_a = jax.tree_leaves(params["params_adaptor"]) |
|
measurements["l2_params_adaptor"] = jnp.sqrt(sum([jnp.vdot(p, p) |
|
for p in ps_a])) |
|
|
|
measurements.update({f"train/{k}": v.mean() for k, v in metrics.items()}) |
|
|
|
return train_state, measurements |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def validation_fn(train_state, batch, seed=0): |
|
params = train_state["params"] |
|
|
|
local_rng = trainer_utils.get_local_rng(seed, batch) |
|
|
|
_, aux = loss_fn( |
|
params, batch["image"], batch.get("labels"), |
|
batch.get("cond_image"), local_rng) |
|
return { |
|
key: jnp.mean(value, axis=tuple(range(1, value.ndim))) |
|
for key, value in aux.items() |
|
} |
|
|
|
def predict_fn_teacher_forcing(train_state, batch, seed=0): |
|
params = train_state["params"] |
|
image, labels = batch["image"], batch.get("labels") |
|
|
|
local_rng = trainer_utils.get_local_rng(seed, batch) |
|
|
|
rng_dropout = {"dropout": local_rng} |
|
sequence = vae_encode(image, rng_dropout) |
|
|
|
if adaptor is not None: |
|
|
|
sequence = adaptor.apply({"params": params["params_adaptor"]}, |
|
sequence, method=adaptor.forward) |
|
|
|
b, s, _ = sequence.shape |
|
|
|
|
|
input_mask = model.get_input_mask_teacher_forced((b, s)) |
|
|
|
_, pdf = model.apply( |
|
{"params": params}, sequence, labels, |
|
train=True, input_mask=input_mask, rngs=rng_dropout) |
|
|
|
rng_sample, _ = jax.random.split(local_rng, 2) |
|
sampled_sequence = pdf.sample(seed=rng_sample) |
|
|
|
if adaptor is not None: |
|
|
|
sampled_sequence = adaptor.apply({"params": params["params_adaptor"]}, |
|
sampled_sequence, method=adaptor.inverse) |
|
logits = vae.apply( |
|
{"params": params_vae}, sampled_sequence, method=vae.decode) |
|
|
|
return {"logits": logits} |
|
|
|
def predict_fn_rep(train_state, image, seed=0): |
|
assert model.style == "ar" |
|
assert model.drop_labels_probability == 1.0 |
|
params = train_state["params"] |
|
|
|
local_rng = trainer_utils.get_local_rng(seed, batch) |
|
|
|
rng_dropout = {"dropout": local_rng} |
|
sequence = vae_encode(image, rng_dropout) |
|
placeholder_labels = jnp.zeros((sequence.shape[0],), dtype=jnp.int32) |
|
|
|
return model.apply({"params": params}, sequence, labels=placeholder_labels, |
|
return_reps=True, method=model.decode) |
|
|
|
def predict_fn_sampling(train_state, batch, seed=0): |
|
params = train_state["params"] |
|
labels = batch.get("labels") |
|
|
|
local_rng = trainer_utils.get_local_rng(seed, batch) |
|
code_logprobs = None |
|
|
|
if model.style == "ar": |
|
if labels is None: |
|
|
|
if "image" in batch: |
|
sampling_batch_size = batch["image"].shape[0] |
|
elif "cond_image" in batch: |
|
sampling_batch_size = batch["cond_image"].shape[0] |
|
else: |
|
sampling_batch_size = config.get("sampling_batch_size", 4) |
|
else: |
|
sampling_batch_size = None |
|
sampled_codes, code_logprobs = softar_decode.generate( |
|
params={"params": params}, |
|
seed=local_rng, |
|
model=model, |
|
seq_len=config.model.seq_len, |
|
feature_dim=config.model.out_dim, |
|
labels=labels, |
|
cond_image=batch.get("cond_image"), |
|
batch_size=sampling_batch_size, |
|
config=config.get("ar_generation_config"), |
|
) |
|
elif model.style == "masked": |
|
assert "cond_image" not in batch |
|
sampled_codes = parallel_decode.decode_masked( |
|
rng=local_rng, |
|
labels=labels, |
|
seq_len=config.model.seq_len, |
|
feature_dim=config.model.out_dim, |
|
model=model, |
|
variables={"params": params}, |
|
config=parallel_decode.MaskedGenerationConfig( |
|
**config.get("masked_generation_config", {}) |
|
), |
|
).current_inputs_q |
|
else: |
|
raise NotImplementedError |
|
|
|
if adaptor is not None: |
|
|
|
sampled_codes = adaptor.apply({"params": params["params_adaptor"]}, |
|
sampled_codes, method=adaptor.inverse) |
|
|
|
sampled_images = vae.apply( |
|
{"params": params_vae}, sampled_codes, method=vae.decode) |
|
|
|
sampling_results = {"logits": sampled_images} |
|
if code_logprobs is not None: |
|
sampling_results["logprobs"] = code_logprobs |
|
|
|
return sampling_results |
|
|
|
def predict_fn_sampling_panoptic( |
|
train_state, batch, seed=0, min_fraction=0.0): |
|
logits = predict_fn_sampling(train_state, batch, seed)["logits"] |
|
return panoptic_task.panoptic_predictions_from_logits( |
|
logits["semantics"], logits["instances"], min_fraction=min_fraction) |
|
|
|
def predict_fn_sampling_depth(train_state, batch, seed=0): |
|
depth = predict_fn_sampling(train_state, batch, seed)["logits"]["depth"] |
|
depth = trainer_utils.unbin_depth( |
|
depth, min_depth=config.min_depth, max_depth=config.max_depth, |
|
num_bins=config.vae.model.inout_specs["depth"][1]) |
|
return {"depth": depth} |
|
|
|
|
|
@functools.lru_cache(maxsize=None) |
|
def evaluators(): |
|
return eval_common.from_config( |
|
config, |
|
{ |
|
"validation": validation_fn, |
|
"sample_teacher_forced": predict_fn_teacher_forcing, |
|
"sample": predict_fn_sampling, |
|
"sample_panoptic": predict_fn_sampling_panoptic, |
|
"sample_depth": predict_fn_sampling_depth, |
|
"representation": predict_fn_rep, |
|
}, |
|
lambda s: write_note(f"Init evaluator: {s}…\n{u.chrono.note}"), |
|
lambda key, cfg: get_steps(key, default=None, cfg=cfg), |
|
devices_flat, |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
resume_ckpt_path = None |
|
if save_ckpt_path and gfile.exists(f"{save_ckpt_path}-LAST"): |
|
resume_ckpt_path = save_ckpt_path |
|
elif config.get("resume"): |
|
resume_ckpt_path = fillin(config.resume) |
|
|
|
ckpt_mngr = None |
|
if save_ckpt_path or resume_ckpt_path: |
|
ckpt_mngr = array_serial.GlobalAsyncCheckpointManager() |
|
|
|
if resume_ckpt_path: |
|
write_note(f"Resuming training from checkpoint {resume_ckpt_path}...") |
|
jax.tree_map(lambda x: x.delete(), train_state) |
|
del train_state |
|
shardings = { |
|
**train_state_sharding, |
|
"chrono": jax.tree_map(lambda _: repl_sharding, |
|
u.chrono.save()), |
|
} |
|
loaded = u.load_checkpoint_ts( |
|
resume_ckpt_path, tree=shardings, shardings=shardings) |
|
train_state = {key: loaded[key] for key in train_state_sharding.keys()} |
|
|
|
u.chrono.load(jax.device_get(loaded["chrono"])) |
|
del loaded |
|
elif config.get("model_init"): |
|
write_note(f"Initialize model from {config.model_init}...") |
|
train_state["params"] = model_mod.load( |
|
train_state["params"], config.model_init, config.get("model"), |
|
**config.get("model_load", {})) |
|
|
|
|
|
train_state["params"] = u.reshard( |
|
train_state["params"], train_state_sharding["params"]) |
|
|
|
parameter_overview.log_parameter_overview( |
|
train_state["params"], msg="restored params", |
|
include_stats="global", jax_logging_process=0) |
|
|
|
|
|
write_note("Inferring the first step number...") |
|
first_step_device = bv_optax.get_count(train_state["opt"], jittable=True) |
|
first_step = int(jax.device_get(first_step_device)) |
|
u.chrono.inform(first_step=first_step) |
|
|
|
|
|
|
|
|
|
if first_step in (total_steps, 0): |
|
write_note("Running initial or final evals...") |
|
mw.step_start(first_step) |
|
for (name, evaluator, _, prefix) in evaluators(): |
|
if config.evals[name].get("skip_first") and first_step != total_steps: |
|
continue |
|
write_note(f"{name} evaluation...\n{u.chrono.note}") |
|
with u.chrono.log_timing(f"z/secs/eval/{name}"): |
|
with mesh, flax.linen.logical_axis_rules(sharding_rules): |
|
for key, value in evaluator.run(train_state): |
|
mw.measure(f"{prefix}{key}", value) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
prof = None |
|
|
|
write_note("Starting training loop, compiling the first step...") |
|
for step, batch in zip(range(first_step + 1, total_steps + 1), train_iter): |
|
|
|
if config.get("eval_only", False): |
|
break |
|
mw.step_start(step) |
|
|
|
with jax.profiler.StepTraceAnnotation("train_step", step_num=step): |
|
with u.chrono.log_timing("z/secs/update0", noop=step > first_step + 1): |
|
with mesh, flax.linen.logical_axis_rules(sharding_rules): |
|
train_state, measurements = update_fn(train_state, rng_loop, batch) |
|
|
|
|
|
if jax.process_index() == 0: |
|
prof = u.startstop_prof(prof, step, first_step, get_steps("log_training")) |
|
|
|
|
|
if (u.itstime(step, get_steps("log_training"), total_steps, host=0) |
|
or u.chrono.warmup and jax.process_index() == 0): |
|
for i, sched_fn_cpu in enumerate(sched_fns_cpu): |
|
mw.measure(f"global_schedule{i if i else ''}", |
|
sched_fn_cpu(u.put_cpu(step - 1))) |
|
measurements = jax.device_get(measurements) |
|
for name, value in measurements.items(): |
|
mw.measure(name, value) |
|
u.chrono.tick(step) |
|
if not np.isfinite(measurements["training_loss"]): |
|
raise RuntimeError(f"The loss became nan or inf somewhere within steps " |
|
f"[{step - get_steps('log_training')}, {step}]") |
|
|
|
|
|
keep_ckpt_steps = get_steps("keep_ckpt", None) or total_steps |
|
if save_ckpt_path and ( |
|
(keep := u.itstime(step, keep_ckpt_steps, total_steps, first=False)) |
|
or u.itstime(step, get_steps("ckpt", None), total_steps, first=True) |
|
): |
|
u.chrono.pause(wait_for=train_state) |
|
|
|
|
|
ckpt = {**train_state} |
|
|
|
|
|
|
|
with jax.transfer_guard("allow"): |
|
chrono_ckpt = multihost_utils.broadcast_one_to_all(u.chrono.save()) |
|
chrono_shardings = jax.tree_map(lambda _: repl_sharding, chrono_ckpt) |
|
ckpt = ckpt | {"chrono": u.reshard(chrono_ckpt, chrono_shardings)} |
|
|
|
u.save_checkpoint_ts(ckpt_mngr, ckpt, save_ckpt_path, step, keep) |
|
u.chrono.resume() |
|
|
|
for (name, evaluator, log_steps, prefix) in evaluators(): |
|
if u.itstime(step, log_steps, total_steps, first=False, last=True): |
|
u.chrono.pause(wait_for=train_state) |
|
u.chrono.tick(step) |
|
write_note(f"{name} evaluation...\n{u.chrono.note}") |
|
with u.chrono.log_timing(f"z/secs/eval/{name}"): |
|
with mesh, flax.linen.logical_axis_rules(sharding_rules): |
|
for key, value in evaluator.run(train_state): |
|
mw.measure(f"{prefix}{key}", jax.device_get(value)) |
|
u.chrono.resume() |
|
mw.step_end() |
|
|
|
|
|
if jax.process_index() == 0 and prof is not None: |
|
u.startstop_prof(prof) |
|
|
|
|
|
write_note(f"Done!\n{u.chrono.note}") |
|
|
|
pool.close() |
|
pool.join() |
|
mw.close() |
|
|
|
if ckpt_mngr: |
|
ckpt_mngr.wait_until_finished() |
|
|
|
|
|
u.sync() |
|
|
|
u.maybe_cleanup_workdir(workdir, flags.FLAGS.cleanup, info) |
|
|
|
|
|
if __name__ == "__main__": |
|
app.run(main) |
|
|