Lettuce POS Taggers
Collection
Fine-tuned Part-of-Speech Taggers for English, Dutch, French & German
•
8 items
•
Updated
•
1
This model is a fine-tuned version of pdelobelle/robbert-v2-dutch-base on the None dataset. It achieves the following results on the evaluation set:
More information needed
More information needed
More information needed
The following hyperparameters were used during training:
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 1.0 | 69 | 3.7703 | 0.2597 | 0.1252 | 0.1689 | 0.2575 |
No log | 2.0 | 138 | 1.0148 | 0.8058 | 0.8008 | 0.8033 | 0.8066 |
No log | 3.0 | 207 | 0.3402 | 0.9302 | 0.9278 | 0.9290 | 0.9299 |
No log | 4.0 | 276 | 0.2016 | 0.9559 | 0.9551 | 0.9555 | 0.9561 |
No log | 5.0 | 345 | 0.1486 | 0.9643 | 0.9638 | 0.9641 | 0.9648 |
No log | 6.0 | 414 | 0.1206 | 0.9697 | 0.9696 | 0.9697 | 0.9702 |
No log | 7.0 | 483 | 0.1063 | 0.9720 | 0.9719 | 0.9720 | 0.9727 |
1.2192 | 8.0 | 552 | 0.0983 | 0.9734 | 0.9735 | 0.9735 | 0.9742 |
1.2192 | 9.0 | 621 | 0.0947 | 0.9746 | 0.9747 | 0.9746 | 0.9754 |
1.2192 | 10.0 | 690 | 0.0913 | 0.9753 | 0.9755 | 0.9754 | 0.9761 |
1.2192 | 11.0 | 759 | 0.0885 | 0.9761 | 0.9763 | 0.9762 | 0.9770 |
1.2192 | 12.0 | 828 | 0.0877 | 0.9764 | 0.9765 | 0.9764 | 0.9772 |
1.2192 | 13.0 | 897 | 0.0878 | 0.9767 | 0.9769 | 0.9768 | 0.9775 |
1.2192 | 14.0 | 966 | 0.0873 | 0.9767 | 0.9769 | 0.9768 | 0.9776 |
0.0688 | 15.0 | 1035 | 0.0877 | 0.9771 | 0.9773 | 0.9772 | 0.9779 |
0.0688 | 16.0 | 1104 | 0.0878 | 0.9773 | 0.9774 | 0.9773 | 0.9781 |
0.0688 | 17.0 | 1173 | 0.0897 | 0.9772 | 0.9773 | 0.9773 | 0.9781 |
0.0688 | 18.0 | 1242 | 0.0909 | 0.9775 | 0.9776 | 0.9776 | 0.9783 |
0.0688 | 19.0 | 1311 | 0.0917 | 0.9776 | 0.9778 | 0.9777 | 0.9785 |
0.0688 | 20.0 | 1380 | 0.0924 | 0.9778 | 0.9780 | 0.9779 | 0.9787 |
0.0688 | 21.0 | 1449 | 0.0949 | 0.9777 | 0.9779 | 0.9778 | 0.9785 |
0.0366 | 22.0 | 1518 | 0.0956 | 0.9776 | 0.9777 | 0.9777 | 0.9784 |
0.0366 | 23.0 | 1587 | 0.0962 | 0.9778 | 0.9780 | 0.9779 | 0.9786 |
0.0366 | 24.0 | 1656 | 0.0992 | 0.9777 | 0.9780 | 0.9779 | 0.9786 |
0.0366 | 25.0 | 1725 | 0.0999 | 0.9779 | 0.9781 | 0.9780 | 0.9787 |
0.0366 | 26.0 | 1794 | 0.1007 | 0.9780 | 0.9782 | 0.9781 | 0.9789 |
0.0366 | 27.0 | 1863 | 0.1022 | 0.9781 | 0.9782 | 0.9782 | 0.9789 |
0.0366 | 28.0 | 1932 | 0.1030 | 0.9781 | 0.9783 | 0.9782 | 0.9790 |
0.0226 | 29.0 | 2001 | 0.1055 | 0.9781 | 0.9782 | 0.9781 | 0.9789 |
0.0226 | 30.0 | 2070 | 0.1057 | 0.9780 | 0.9782 | 0.9781 | 0.9789 |
0.0226 | 31.0 | 2139 | 0.1067 | 0.9780 | 0.9781 | 0.9780 | 0.9788 |
0.0226 | 32.0 | 2208 | 0.1077 | 0.9780 | 0.9782 | 0.9781 | 0.9789 |
0.0226 | 33.0 | 2277 | 0.1085 | 0.9780 | 0.9781 | 0.9781 | 0.9789 |
0.0226 | 34.0 | 2346 | 0.1094 | 0.9781 | 0.9782 | 0.9781 | 0.9789 |
0.0226 | 35.0 | 2415 | 0.1095 | 0.9783 | 0.9784 | 0.9783 | 0.9791 |
0.0226 | 36.0 | 2484 | 0.1101 | 0.9780 | 0.9782 | 0.9781 | 0.9789 |
0.0159 | 37.0 | 2553 | 0.1114 | 0.9782 | 0.9784 | 0.9783 | 0.9791 |
0.0159 | 38.0 | 2622 | 0.1111 | 0.9782 | 0.9784 | 0.9783 | 0.9791 |
0.0159 | 39.0 | 2691 | 0.1114 | 0.9782 | 0.9784 | 0.9783 | 0.9791 |
0.0159 | 40.0 | 2760 | 0.1115 | 0.9783 | 0.9784 | 0.9783 | 0.9791 |