license: apache-2.0
language:
- fr
- it
- de
- es
- en
tags:
- moe
Model Card for Mixtral-8x22B
The Mixtral-8x22B Large Language Model (LLM) is a pretrained generative Sparse Mixture of Experts.
Model details:
- 🧠 ~176B params, ~44B active during inference
- 🪟 65K context window
- 🕵🏾♂️ 8 experts, 2 per token
- 🤓 32K vocab size
- ✂️ Similar tokenizer as 7B
Model quantized and added by Prince Canuma using the full-precision model here: v2ray/Mixtral-8x22B-v0.1.
Run the model in 4-bit precision
from transformers import AutoModelForCausalLM, AutoTokenizer
model_id = "prince-canuma/Mixtral-8x22B-v0.1-4bit"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id)
text = "Who is Einstein?"
inputs = tokenizer(text, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=20)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
Notice
Mixtral-8x22B-v0.1 is a pretrained base model and therefore does not have any moderation mechanisms.
The Mistral AI Team
Albert Jiang, Alexandre Sablayrolles, Alexis Tacnet, Antoine Roux, Arthur Mensch, Audrey Herblin-Stoop, Baptiste Bout, Baudouin de Monicault,Blanche Savary, Bam4d, Caroline Feldman, Devendra Singh Chaplot, Diego de las Casas, Eleonore Arcelin, Emma Bou Hanna, Etienne Metzger, Gianna Lengyel, Guillaume Bour, Guillaume Lample, Harizo Rajaona, Jean-Malo Delignon, Jia Li, Justus Murke, Louis Martin, Louis Ternon, Lucile Saulnier, Lélio Renard Lavaud, Margaret Jennings, Marie Pellat, Marie Torelli, Marie-Anne Lachaux, Nicolas Schuhl, Patrick von Platen, Pierre Stock, Sandeep Subramanian, Sophia Yang, Szymon Antoniak, Teven Le Scao, Thibaut Lavril, Timothée Lacroix, Théophile Gervet, Thomas Wang, Valera Nemychnikova, William El Sayed, William Marshall.