|
--- |
|
license: apache-2.0 |
|
language: |
|
- en |
|
base_model: |
|
- google/siglip2-base-patch16-224 |
|
pipeline_tag: image-classification |
|
library_name: transformers |
|
tags: |
|
- sign-language-detection |
|
- alphabet |
|
--- |
|
 |
|
|
|
# **Alphabet-Sign-Language-Detection** |
|
> **Alphabet-Sign-Language-Detection** is an image classification vision-language encoder model fine-tuned from **google/siglip2-base-patch16-224** for a single-label classification task. It is designed to classify images into **sign language alphabet** categories using the **SiglipForImageClassification** architecture. |
|
|
|
```py |
|
Classification Report: |
|
precision recall f1-score support |
|
|
|
A 0.9995 1.0000 0.9998 4384 |
|
B 1.0000 1.0000 1.0000 4441 |
|
C 1.0000 1.0000 1.0000 3993 |
|
D 1.0000 0.9998 0.9999 4940 |
|
E 1.0000 1.0000 1.0000 4658 |
|
F 1.0000 1.0000 1.0000 5750 |
|
G 0.9992 0.9996 0.9994 4978 |
|
H 1.0000 0.9979 0.9990 4807 |
|
I 0.9992 1.0000 0.9996 4856 |
|
J 1.0000 0.9996 0.9998 5227 |
|
K 0.9972 1.0000 0.9986 5426 |
|
L 1.0000 0.9998 0.9999 5089 |
|
M 1.0000 0.9964 0.9982 3328 |
|
N 0.9955 1.0000 0.9977 2635 |
|
O 0.9998 1.0000 0.9999 4564 |
|
P 1.0000 0.9993 0.9996 4100 |
|
Q 1.0000 1.0000 1.0000 4187 |
|
R 0.9998 0.9984 0.9991 5122 |
|
S 0.9998 0.9998 0.9998 5147 |
|
T 1.0000 1.0000 1.0000 4722 |
|
U 0.9984 0.9998 0.9991 5041 |
|
V 1.0000 0.9984 0.9992 5116 |
|
W 0.9998 1.0000 0.9999 4926 |
|
X 1.0000 0.9995 0.9998 4387 |
|
Y 1.0000 1.0000 1.0000 5185 |
|
Z 0.9996 1.0000 0.9998 4760 |
|
|
|
accuracy 0.9996 121769 |
|
macro avg 0.9995 0.9996 0.9995 121769 |
|
weighted avg 0.9996 0.9996 0.9996 121769 |
|
``` |
|
 |
|
|
|
The model categorizes images into the following 26 classes: |
|
- **Class 0:** "A" |
|
- **Class 1:** "B" |
|
- **Class 2:** "C" |
|
- **Class 3:** "D" |
|
- **Class 4:** "E" |
|
- **Class 5:** "F" |
|
- **Class 6:** "G" |
|
- **Class 7:** "H" |
|
- **Class 8:** "I" |
|
- **Class 9:** "J" |
|
- **Class 10:** "K" |
|
- **Class 11:** "L" |
|
- **Class 12:** "M" |
|
- **Class 13:** "N" |
|
- **Class 14:** "O" |
|
- **Class 15:** "P" |
|
- **Class 16:** "Q" |
|
- **Class 17:** "R" |
|
- **Class 18:** "S" |
|
- **Class 19:** "T" |
|
- **Class 20:** "U" |
|
- **Class 21:** "V" |
|
- **Class 22:** "W" |
|
- **Class 23:** "X" |
|
- **Class 24:** "Y" |
|
- **Class 25:** "Z" |
|
|
|
# **Run with Transformers🤗** |
|
|
|
```python |
|
!pip install -q transformers torch pillow gradio |
|
``` |
|
|
|
```python |
|
import gradio as gr |
|
from transformers import AutoImageProcessor |
|
from transformers import SiglipForImageClassification |
|
from transformers.image_utils import load_image |
|
from PIL import Image |
|
import torch |
|
|
|
# Load model and processor |
|
model_name = "prithivMLmods/Alphabet-Sign-Language-Detection" |
|
model = SiglipForImageClassification.from_pretrained(model_name) |
|
processor = AutoImageProcessor.from_pretrained(model_name) |
|
|
|
def sign_language_classification(image): |
|
"""Predicts sign language alphabet category for an image.""" |
|
image = Image.fromarray(image).convert("RGB") |
|
inputs = processor(images=image, return_tensors="pt") |
|
|
|
with torch.no_grad(): |
|
outputs = model(**inputs) |
|
logits = outputs.logits |
|
probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist() |
|
|
|
labels = { |
|
"0": "A", "1": "B", "2": "C", "3": "D", "4": "E", "5": "F", "6": "G", "7": "H", "8": "I", "9": "J", |
|
"10": "K", "11": "L", "12": "M", "13": "N", "14": "O", "15": "P", "16": "Q", "17": "R", "18": "S", "19": "T", |
|
"20": "U", "21": "V", "22": "W", "23": "X", "24": "Y", "25": "Z" |
|
} |
|
predictions = {labels[str(i)]: round(probs[i], 3) for i in range(len(probs))} |
|
|
|
return predictions |
|
|
|
# Create Gradio interface |
|
iface = gr.Interface( |
|
fn=sign_language_classification, |
|
inputs=gr.Image(type="numpy"), |
|
outputs=gr.Label(label="Prediction Scores"), |
|
title="Alphabet Sign Language Detection", |
|
description="Upload an image to classify it into one of the 26 sign language alphabet categories." |
|
) |
|
|
|
# Launch the app |
|
if __name__ == "__main__": |
|
iface.launch() |
|
``` |
|
|
|
# **Intended Use:** |
|
|
|
The **Alphabet-Sign-Language-Detection** model is designed for sign language image classification. It helps categorize images of hand signs into predefined alphabet categories. Potential use cases include: |
|
|
|
- **Sign Language Education:** Assisting learners in recognizing and practicing sign language alphabets. |
|
- **Accessibility Enhancement:** Supporting applications that improve communication for the hearing impaired. |
|
- **AI Research:** Advancing computer vision models in sign language recognition. |
|
- **Gesture Recognition Systems:** Enabling interactive applications with real-time sign language detection. |