prithivMLmods's picture
Update README.md
84e5004 verified
|
raw
history blame contribute delete
5.46 kB
---
license: apache-2.0
language:
- en
base_model:
- google/siglip2-base-patch16-224
pipeline_tag: image-classification
library_name: transformers
tags:
- sign-language-detection
- alphabet
---
![dzfgdf.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/gFcXjzt_OA-46WpFfz-9L.png)
# **Alphabet-Sign-Language-Detection**
> **Alphabet-Sign-Language-Detection** is an image classification vision-language encoder model fine-tuned from **google/siglip2-base-patch16-224** for a single-label classification task. It is designed to classify images into **sign language alphabet** categories using the **SiglipForImageClassification** architecture.
```py
Classification Report:
precision recall f1-score support
A 0.9995 1.0000 0.9998 4384
B 1.0000 1.0000 1.0000 4441
C 1.0000 1.0000 1.0000 3993
D 1.0000 0.9998 0.9999 4940
E 1.0000 1.0000 1.0000 4658
F 1.0000 1.0000 1.0000 5750
G 0.9992 0.9996 0.9994 4978
H 1.0000 0.9979 0.9990 4807
I 0.9992 1.0000 0.9996 4856
J 1.0000 0.9996 0.9998 5227
K 0.9972 1.0000 0.9986 5426
L 1.0000 0.9998 0.9999 5089
M 1.0000 0.9964 0.9982 3328
N 0.9955 1.0000 0.9977 2635
O 0.9998 1.0000 0.9999 4564
P 1.0000 0.9993 0.9996 4100
Q 1.0000 1.0000 1.0000 4187
R 0.9998 0.9984 0.9991 5122
S 0.9998 0.9998 0.9998 5147
T 1.0000 1.0000 1.0000 4722
U 0.9984 0.9998 0.9991 5041
V 1.0000 0.9984 0.9992 5116
W 0.9998 1.0000 0.9999 4926
X 1.0000 0.9995 0.9998 4387
Y 1.0000 1.0000 1.0000 5185
Z 0.9996 1.0000 0.9998 4760
accuracy 0.9996 121769
macro avg 0.9995 0.9996 0.9995 121769
weighted avg 0.9996 0.9996 0.9996 121769
```
![demo.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/AVpi4xPsVq6PV9NzonHoi.png)
The model categorizes images into the following 26 classes:
- **Class 0:** "A"
- **Class 1:** "B"
- **Class 2:** "C"
- **Class 3:** "D"
- **Class 4:** "E"
- **Class 5:** "F"
- **Class 6:** "G"
- **Class 7:** "H"
- **Class 8:** "I"
- **Class 9:** "J"
- **Class 10:** "K"
- **Class 11:** "L"
- **Class 12:** "M"
- **Class 13:** "N"
- **Class 14:** "O"
- **Class 15:** "P"
- **Class 16:** "Q"
- **Class 17:** "R"
- **Class 18:** "S"
- **Class 19:** "T"
- **Class 20:** "U"
- **Class 21:** "V"
- **Class 22:** "W"
- **Class 23:** "X"
- **Class 24:** "Y"
- **Class 25:** "Z"
# **Run with Transformers🤗**
```python
!pip install -q transformers torch pillow gradio
```
```python
import gradio as gr
from transformers import AutoImageProcessor
from transformers import SiglipForImageClassification
from transformers.image_utils import load_image
from PIL import Image
import torch
# Load model and processor
model_name = "prithivMLmods/Alphabet-Sign-Language-Detection"
model = SiglipForImageClassification.from_pretrained(model_name)
processor = AutoImageProcessor.from_pretrained(model_name)
def sign_language_classification(image):
"""Predicts sign language alphabet category for an image."""
image = Image.fromarray(image).convert("RGB")
inputs = processor(images=image, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist()
labels = {
"0": "A", "1": "B", "2": "C", "3": "D", "4": "E", "5": "F", "6": "G", "7": "H", "8": "I", "9": "J",
"10": "K", "11": "L", "12": "M", "13": "N", "14": "O", "15": "P", "16": "Q", "17": "R", "18": "S", "19": "T",
"20": "U", "21": "V", "22": "W", "23": "X", "24": "Y", "25": "Z"
}
predictions = {labels[str(i)]: round(probs[i], 3) for i in range(len(probs))}
return predictions
# Create Gradio interface
iface = gr.Interface(
fn=sign_language_classification,
inputs=gr.Image(type="numpy"),
outputs=gr.Label(label="Prediction Scores"),
title="Alphabet Sign Language Detection",
description="Upload an image to classify it into one of the 26 sign language alphabet categories."
)
# Launch the app
if __name__ == "__main__":
iface.launch()
```
# **Intended Use:**
The **Alphabet-Sign-Language-Detection** model is designed for sign language image classification. It helps categorize images of hand signs into predefined alphabet categories. Potential use cases include:
- **Sign Language Education:** Assisting learners in recognizing and practicing sign language alphabets.
- **Accessibility Enhancement:** Supporting applications that improve communication for the hearing impaired.
- **AI Research:** Advancing computer vision models in sign language recognition.
- **Gesture Recognition Systems:** Enabling interactive applications with real-time sign language detection.