gwq2.png

GWQ-9B-Preview 1&2 GGUF

GWQ2 - Gemma with Questions Prev is a family of lightweight, state-of-the-art open models from Google, built using the same research and technology employed to create the Gemini models. These models are text-to-text, decoder-only large language models, available in English, with open weights for both pre-trained and instruction-tuned variants. Gemma models are well-suited for a variety of text generation tasks, including question answering, summarization, and reasoning. GWQ is fine-tuned on the Chain of Continuous Thought Synthetic Dataset, built upon the Gemma2forCasualLM architecture.

Running GWQ Demo

# pip install accelerate
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

tokenizer = AutoTokenizer.from_pretrained("prithivMLmods/GWQ-9B-Preview2")
model = AutoModelForCausalLM.from_pretrained(
    "prithivMLmods/GWQ-9B-Preview2",
    device_map="auto",
    torch_dtype=torch.bfloat16,
)

input_text = "Write me a poem about Machine Learning."
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")

outputs = model.generate(**input_ids, max_new_tokens=32)
print(tokenizer.decode(outputs[0]))

You can ensure the correct chat template is applied by using tokenizer.apply_chat_template as follows:

messages = [
    {"role": "user", "content": "Write me a poem about Machine Learning."},
]
input_ids = tokenizer.apply_chat_template(messages, return_tensors="pt", return_dict=True).to("cuda")

outputs = model.generate(**input_ids, max_new_tokens=256)
print(tokenizer.decode(outputs[0]))

Key Architecture

  1. Transformer-Based Design:
    Gemma 2 leverages the transformer architecture, utilizing self-attention mechanisms to process input text and capture contextual relationships effectively.

  2. Lightweight and Efficient:
    It is designed to be computationally efficient, with fewer parameters compared to larger models, making it ideal for deployment on resource-constrained devices or environments.

  3. Modular Layers:
    The architecture consists of modular encoder and decoder layers, allowing flexibility in adapting the model for specific tasks like text generation, summarization, or classification.

  4. Attention Mechanisms:
    Gemma 2 employs multi-head self-attention to focus on relevant parts of the input text, improving its ability to handle long-range dependencies and complex language structures.

  5. Pre-training and Fine-Tuning:
    The model is pre-trained on large text corpora and can be fine-tuned for specific tasks, such as markdown processing in ReadM.Md, to enhance its performance on domain-specific data.

  6. Scalability:
    The architecture supports scaling up or down based on the application's requirements, balancing performance and resource usage.

  7. Open-Source and Customizable:
    Being open-source, Gemma 2 allows developers to modify and extend its architecture to suit specific use cases, such as integrating it into tools like ReadM.Md for markdown-related tasks.

Intended Use of GWQ2 (Gemma with Questions2)

  1. Question Answering:
    The model excels in generating concise and relevant answers to user-provided queries across various domains.

  2. Summarization:
    It can be used to summarize large bodies of text, making it suitable for news aggregation, academic research, and report generation.

  3. Reasoning Tasks:
    GWQ is fine-tuned on the Chain of Continuous Thought Synthetic Dataset, which enhances its ability to perform reasoning, multi-step problem solving, and logical inferences.

  4. Text Generation:
    The model is ideal for creative writing tasks such as generating poems, stories, and essays. It can also be used for generating code comments, documentation, and markdown files.

  5. Instruction Following:
    GWQ’s instruction-tuned variant is suitable for generating responses based on user instructions, making it useful for virtual assistants, tutoring systems, and automated customer support.

  6. Domain-Specific Applications:
    Thanks to its modular design and open-source nature, the model can be fine-tuned for specific tasks like legal document summarization, medical record analysis, or financial report generation.

Limitations of GWQ2

  1. Resource Requirements:
    Although lightweight compared to larger models, the 9B parameter size still requires significant computational resources, including GPUs with large memory for inference.

  2. Knowledge Cutoff:
    The model’s pre-training data may not include recent information, making it less effective for answering queries on current events or newly developed topics.

  3. Bias in Outputs:
    Since the model is trained on publicly available datasets, it may inherit biases present in those datasets, leading to potentially biased or harmful outputs in sensitive contexts.

  4. Hallucinations:
    Like other large language models, GWQ can occasionally generate incorrect or nonsensical information, especially when asked for facts or reasoning outside its training scope.

  5. Lack of Common-Sense Reasoning:
    While GWQ is fine-tuned for reasoning, it may still struggle with tasks requiring deep common-sense knowledge or nuanced understanding of human behavior and emotions.

  6. Dependency on Fine-Tuning:
    For optimal performance on domain-specific tasks, fine-tuning on relevant datasets is required, which demands additional computational resources and expertise.

  7. Context Length Limitation:
    The model’s ability to process long documents is limited by its maximum context window size. If the input exceeds this limit, truncation may lead to loss of important information.

Running Models with Ollama

Step 1: Install Ollama

Ollama is supported on MacOS, Windows, and Linux. To install Ollama on your machine, follow the instructions below based on your operating system.

Linux (Ubuntu)

Run the following command to install Ollama:

curl -fsSL https://ollama.com/install.sh | sh

MacOS or Windows

Visit the official Ollama website and download the installer for your platform.

During installation, Ollama will auto-detect NVIDIA/AMD GPUs if the drivers are installed. CPU-only mode is also supported but may be slower.

Step 2: Download a Model

Ollama supports a variety of models. You can browse the model library to find the model you want to use. To download a model, use the ollama pull command.

For example, to download the Gemma 2B model:

ollama pull gemma:2b

This will download the model to your machine. The download size and time will vary depending on the model.

Step 3: Run the Model

Once the model is downloaded, you can start interacting with it using the ollama run command:

ollama run gemma:2b

This will start an Ollama REPL where you can interact with the model directly. For example:

>>> What are some commonly used modules in the Python standard library?
Some commonly used modules in the Python standard library include:
- os
- sys
- math
- random
- datetime
- json

Additional Commands

  • List Downloaded Models: To see all models downloaded on your machine:

    ollama list
    
  • Remove a Model: To delete a model:

    ollama rm <model_name>
    
  • Update a Model: To update a model to the latest version:

    ollama pull <model_name>
    

For more details, visit the Ollama documentation.

Downloads last month
80
GGUF
Model size
9.24B params
Architecture
gemma2

16-bit

Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for prithivMLmods/GWQ-9B-Preview2-GGUF

Quantized
(14)
this model

Collections including prithivMLmods/GWQ-9B-Preview2-GGUF