whisper_finetune / README.md
procit009's picture
End of training
a32081d verified
metadata
library_name: transformers
language:
  - nl
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - procit009/nl_stt
metrics:
  - wer
model-index:
  - name: 'Whisper Small nl '
    results: []

Whisper Small nl

This model is a fine-tuned version of openai/whisper-small on the procit009/nl_stt dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2637
  • Wer: 14.1492

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 5
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 200
  • num_epochs: 6
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.2302 1.0 125 0.2444 14.2023
0.1247 2.0 250 0.2396 14.4464
0.036 3.0 375 0.2448 13.9582
0.0117 4.0 500 0.2549 14.0113
0.0049 5.0 625 0.2604 15.5928
0.0031 6.0 750 0.2637 14.1492

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0