File size: 5,865 Bytes
a304cd1
 
 
 
 
 
 
 
 
 
 
 
 
 
37a9a78
a304cd1
 
 
 
 
 
 
 
 
 
 
 
693ffd6
a304cd1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3354aea
a304cd1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers

---

# ST-NLI-ca_paraphrase-multilingual-mpnet-base

This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.

It has been developed through further training of a multilingual fine-tuned model, [paraphrase-multilingual-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2) using NLI data. Specifically, it was trained on two Catalan NLI datasets: [TE-ca](https://huggingface.co/datasets/projecte-aina/teca) and the professional translation of XNLI into Catalan. The training employed the Multiple Negatives Ranking Loss with Hard Negatives, which leverages triplets composed of a premise, an entailed hypothesis, and a contradiction. It is important to note that, given this format, neutral hypotheses from the NLI datasets were not used for training. Additionally, as a form of data augmentation, the model's training set was expanded by duplicating the triplets, wherein the order of the premise and entailed hypothesis was reversed, resulting in a total of 18,928 triplets.

## Usage (Sentence-Transformers)

Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:

```
pip install -U sentence-transformers
```

Then you can use the model like this:

```python
from sentence_transformers import SentenceTransformer, util
sentences = ["This is an example sentence", "Each sentence is converted"]

model = SentenceTransformer('{MODEL_NAME}')
embeddings = model.encode(sentences)
print(embeddings)
```

For instance, to sort a list of sentences by their similarity to a reference sentence, the following code can be used:

```python
reference_sent = "Avui és un bon dia."
sentences = [
    "M'agrada el dia que fa.",
    "Tothom té un mal dia.",
    "És dijous.",
    "Fa un dia realment dolent",
]

reference_sent_embedding = model.encode(reference_sent)
similarity_scores = {}
for sentence in sentences:
    sent_embedding = model.encode(sentence)
    cosine_similarity = util.pytorch_cos_sim(reference_sent_embedding, sent_embedding)
    similarity_scores[float(cosine_similarity.data[0][0])] = sentence

print(f"Sentences in order of similarity to '{reference_sent}' (from max to min):")
for i, (cosine_similarity,sent) in enumerate(dict(sorted(similarity_scores.items(), reverse=True)).items()):
    print(f"{i}) '{sent}': {cosine_similarity}")
```


## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.

```python
from transformers import AutoTokenizer, AutoModel
import torch


#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
    token_embeddings = model_output[0] #First element of model_output contains all token embeddings
    input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
    return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)


# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']

# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
model = AutoModel.from_pretrained('{MODEL_NAME}')

# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')

# Compute token embeddings
with torch.no_grad():
    model_output = model(**encoded_input)

# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])

print("Sentence embeddings:")
print(sentence_embeddings)
```



## Evaluation Results

We evaluated the model on the test set of the Catalan Semantic Text Similarity ([STS-ca](https://huggingface.co/datasets/projecte-aina/sts-ca)), and on two paraphrase identification tasks in Catalan: [Parafraseja](https://huggingface.co/datasets/projecte-aina/Parafraseja) and the professional translation of PAWS into Catalan.

| STS-ca (Pearson) | Parafraseja (acc) | PAWS-ca (acc) |
|------------------|-------------------|---------------|
| 0.65             | 0.72              | 0.65          |


## Training
The model was trained with the parameters:

**DataLoader**:

`sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length 147 with parameters:
```
{'batch_size': 128}
```

**Loss**:

`sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters:
  ```
  {'scale': 20.0, 'similarity_fct': 'cos_sim'}
  ```

Parameters of the fit()-Method:
```
{
    "epochs": 1,
    "evaluation_steps": 14,
    "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
    "max_grad_norm": 1,
    "optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
    "optimizer_params": {
        "lr": 2e-05
    },
    "scheduler": "WarmupLinear",
    "steps_per_epoch": null,
    "warmup_steps": 15,
    "weight_decay": 0.01
}
```


## Full Model Architecture
```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```

## Citing & Authors

For further information, send an email to [email protected]