|
--- |
|
language: |
|
- en |
|
- es |
|
- ca |
|
licence: |
|
- apache-2.0 |
|
tags: |
|
- aguila |
|
- falcon |
|
- spanish |
|
- catalan |
|
metrics: |
|
- ppl |
|
model-index: |
|
- name: aguila_7b |
|
results: |
|
- task: |
|
name: Causal Language Modeling |
|
type: text-generation |
|
metrics: |
|
- name: Perplexity |
|
type: ppl |
|
value: 8.59 |
|
pipeline_tag: text-generation |
|
widget: |
|
- text: |- |
|
Respon a la pregunta següent. |
|
Pregunta: "Quina és la capital de Suècia?" |
|
Resposta: "La capital de Suècia és Estocolm." |
|
---- |
|
Respon a la pregunta següent. |
|
Pregunta: "Quina beguda es consumeix als matins per despertar-se?" |
|
Resposta: "La majoria de gent consumeix cafè per despertar-se." |
|
---- |
|
Respon a la pregunta següent. |
|
Pregunta: "Explica com funciona un motor de combustió" |
|
Resposta: |
|
example_title: Pregunta-Resposta |
|
- text: |- |
|
Extrae las entidades nombradas del siguiente texto: |
|
Texto: "Me llamo Wolfgang y vivo en Berlin" |
|
Entidades: Wolfgang:PER, Berlin:LOC |
|
---- |
|
Extrae las entidades nombradas del siguiente texto: |
|
Texto: "Hoy voy a visitar el parc güell tras salir del barcelona supercomputing center" |
|
Entidades: parc güell:LOC, barcelona supercomputing center:LOC |
|
---- |
|
Extrae las entidades nombradas del siguiente texto: |
|
Texto: "Maria y Miguel no tienen ningún problema contigo" |
|
Entidades: Maria:PER, Miguel:PER |
|
---- |
|
Extrae las entidades nombradas del siguiente texto: |
|
Texto: "Damián se cortó el pelo" |
|
Entidades: Damián:PER |
|
---- |
|
Extrae las entidades nombradas del siguiente texto: |
|
Texto: "Lo mejor de Barcelona és el bar de mi amigo Pablo" |
|
Entidades: Pablo:PER, Barcelona:LOC |
|
---- |
|
Extrae las entidades nombradas del siguiente texto: |
|
Texto: "Carlos comparte piso con Marc" |
|
Entidades: |
|
example_title: Entidades-Nombradas |
|
--- |
|
|
|
# Ǎguila-7B |
|
|
|
## Table of Contents |
|
<details> |
|
<summary>Click to expand</summary> |
|
|
|
- [Model description](#model-description) |
|
- [Intended uses and limitations](#intended-uses-and-limitations) |
|
- [How to use](#how-to-use) |
|
- [Limitations and bias](#limitations-and-bias) |
|
- [Language adaptation](#language-adaptation) |
|
- [Training](#training) |
|
- [Training data](#training-data) |
|
- [Training procedure](#training-procedure) |
|
- [Additional information](#additional-information) |
|
- [Author](#author) |
|
- [Contact](#contact) |
|
- [Copyright](#copyright) |
|
- [License](#license) |
|
- [Funding](#funding) |
|
- [Disclaimer](#disclaimer) |
|
|
|
</details> |
|
|
|
## Model description |
|
|
|
**Ǎguila-7B** is a transformer-based causal language model for Catalan, Spanish, and English. |
|
It is based on the [Falcon-7B](https://huggingface.co/tiiuae/falcon-7b) model and has been trained on a 26B token |
|
trilingual corpus collected from publicly available corpora and crawlers. |
|
|
|
|
|
## Intended uses and limitations |
|
|
|
The **Ǎguila-7B** model is ready-to-use only for causal language modeling to perform text-generation tasks. |
|
However, it is intended to be fine-tuned for downstream tasks. |
|
|
|
## How to use |
|
|
|
Here is how to use this model: |
|
|
|
```python |
|
import torch |
|
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM |
|
|
|
input_text = "El mercat del barri és fantàstic, hi pots trobar" |
|
|
|
model_id = "projecte-aina/aguila-7b" |
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
generator = pipeline( |
|
"text-generation", |
|
model=model_id, |
|
tokenizer=tokenizer, |
|
torch_dtype=torch.bfloat16, |
|
trust_remote_code=True, |
|
device_map="auto", |
|
) |
|
generation = generator( |
|
input_text, |
|
do_sample=True, |
|
top_k=10, |
|
eos_token_id=tokenizer.eos_token_id, |
|
) |
|
|
|
print(f"Result: {generation[0]['generated_text']}") |
|
``` |
|
|
|
## Limitations and bias |
|
At the time of submission, no measures have been taken to estimate the bias and toxicity embedded in the model. |
|
However, we are well aware that our models may be biased since the corpora have been collected using crawling techniques |
|
on multiple web sources. We intend to conduct research in these areas in the future, and if completed, this model card will be updated. |
|
|
|
|
|
## Language adaptation |
|
|
|
We adapted the original [Falcon-7B](https://huggingface.co/tiiuae/falcon-7b) model to Spanish and Catalan by swapping the tokenizer and adjusting the embedding layer. |
|
|
|
The adaptation procedure is explained in [this blog post](https://medium.com/@mpamies247/ee1ebc70bc79). |
|
|
|
## Training |
|
|
|
### Training data |
|
|
|
The training corpus consists of 26B tokens of several corpora gathered from web crawlings and public domain data. |
|
|
|
| Dataset | Language | Words (per-epoch) | Epochs | |
|
|---------------------|----------|--------------------|--------------| |
|
| Wikipedia | en | 2169.97M | 1.428144485 | |
|
| C4_es | es | 53709.80M | 0.1049686196 | |
|
| Biomedical | es | 455.03M | 0.7140722425 | |
|
| Legal | es | 995.70M | 0.7140722425 | |
|
| Wikipedia | es | 693.60M | 1.428144485 | |
|
| Gutenberg | es | 53.18M | 0.7140722425 | |
|
| C4_ca | ca | 2826.00M | 2.142216727 | |
|
| Biomedical | ca | 11.80M | 1.428144485 | |
|
| RacoCatalà Noticias | ca | 17.16M | 2.142216727 | |
|
| RacoCatalà Forums | ca | 333.73M | 2.142216727 | |
|
| CaWaC | ca | 57.79M | 2.142216727 | |
|
| Wikipedia | ca | 228.01M | 3.570361212 | |
|
| Vilaweb | ca | 50.34M | 2.142216727 | |
|
|
|
The dataset has the following language distribution: |
|
|
|
|Language|Percentage| |
|
|--------|----------| |
|
| En | 16.84% | |
|
| Es | 41.38% | |
|
| Ca | 41.79% | |
|
|
|
Note: A small amount of English data was kept to avoid catastrophic forgetting. |
|
|
|
## Training procedure |
|
|
|
The training corpus has been tokenized using a byte version of [Byte-Pair Encoding (BPE)](https://github.com/openai/gpt-2) with a vocabulary size of 50,257 tokens. |
|
After training a new tokenizer and adapting [falcon-7b](https://huggingface.co/tiiuae/falcon-7b)'s embedding layer, the model was |
|
further pre-trained in three target languages: Catalan, Spanish and English. |
|
|
|
The training lasted a total of 320 hours on 8 NVIDIA H100 GPUs with 80GB RAM. |
|
|
|
|
|
### Training hyperparameters |
|
|
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- num_devices: 8 |
|
- train_batch_size: 1 |
|
- eval_batch_size: 1 |
|
- total_train_batch_size: 8 |
|
- total_eval_batch_size: 8 |
|
- optimizer: Adam |
|
- betas: (0.9,0.999) |
|
- epsilon: 1e-08 |
|
- learning_rate: 5e-05 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 1.0 |
|
|
|
|
|
### Framework versions |
|
|
|
- Pytorch 2.0.0 |
|
- Transformers 4.30.2 |
|
- Datasets 2.13.1 |
|
- Tokenizers 0.13.3 |
|
|
|
## Additional information |
|
|
|
### Author |
|
The Language Technologies Unit from Barcelona Supercomputing Center. |
|
|
|
### Contact |
|
For further information, please send an email to <[email protected]>. |
|
|
|
### Copyright |
|
Copyright(c) 2023 by Language Technologies Unit, Barcelona Supercomputing Center. |
|
|
|
### License |
|
[Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0) |
|
|
|
### Funding |
|
This work was partially funded by: |
|
- The [Departament de la Vicepresidència i de Polítiques Digitals i Territori de la Generalitat de Catalunya](https://politiquesdigitals.gencat.cat/ca/inici/index.html#googtrans(ca|en) within the framework of [Projecte AINA](https://politiquesdigitals.gencat.cat/ca/economia/catalonia-ai/aina). |
|
- The [Spanish State Secretariat for Digitalization and Artificial Intelligence](https://portal.mineco.gob.es/en-us/digitalizacionIA/Pages/sedia.aspx) within the framework of the [Plan de Impulso de las Tecnologías del Lenguaje](https://plantl.mineco.gob.es/Paginas/index.aspx). |
|
|
|
### Disclaimer |
|
|
|
<details> |
|
<summary>Click to expand</summary> |
|
|
|
The model published in this repository is intended for a generalist purpose and is available to third parties under a permissive Apache License, Version 2.0. |
|
|
|
Be aware that the model may have biases and/or any other undesirable distortions. |
|
|
|
When third parties deploy or provide systems and/or services to other parties using this model (or any system based on it) |
|
or become users of the model, they should note that it is their responsibility to mitigate the risks arising from its use and, |
|
in any event, to comply with applicable regulations, including regulations regarding the use of Artificial Intelligence. |
|
|
|
In no event shall the owner and creator of the model (Barcelona Supercomputing Center) |
|
be liable for any results arising from the use made by third parties. |
|
|
|
</details> |