File size: 5,729 Bytes
b511b80
64436b5
 
 
 
 
 
b511b80
64436b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b511b80
64436b5
 
 
612eee4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64436b5
612eee4
64436b5
612eee4
64436b5
612eee4
64436b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
612eee4
64436b5
 
 
 
 
 
148698a
 
 
64436b5
 
 
 
612eee4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64436b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a9b37e
612eee4
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
---
pipeline_tag: text-classification

language:

- ca

license: apache-2.0

tags:

- "catalan"

- "semantic textual similarity"

- "sts-ca"

- "CaText"

- "Catalan Textual Corpus"

datasets:

- "projecte-aina/sts-ca"

metrics:

- "combined_score"

model-index:

- name: roberta-base-ca-v2-cased-sts
  results:
  - task: 
      type: text-classification
    dataset:
      type:   projecte-aina/sts-ca
      name: STS-ca
    metrics:
      - name: Combined score
        type: combined_score
        value: 0.7907
        
---

# Catalan BERTa-v2 (roberta-base-ca-v2) finetuned for Semantic Textual Similarity.

## Table of Contents
- [Model Description](#model-description)
- [Intended Uses and Limitations](#intended-uses-and-limitations)
- [How to Use](#how-to-use)
- [Training](#training)
  - [Training Data](#training-data)
  - [Training Procedure](#training-procedure)
- [Evaluation](#evaluation)
   - [Variable and Metrics](#variable-and-metrics)
   - [Evaluation Results](#evaluation-results)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Funding](#funding)
- [Contributions](#contributions)

## Model description

The **roberta-base-ca-v2-cased-sts** is a Semantic Textual Similarity (STS) model for the Catalan language fine-tuned from the [roberta-base-ca-v2](https://huggingface.co/projecte-aina/roberta-base-ca-v2) model, a [RoBERTa](https://arxiv.org/abs/1907.11692) base model pre-trained on a medium-size corpus collected from publicly available corpora and crawlers (check the roberta-base-ca-v2 model card for more details).

## Intended Uses and Limitations

**roberta-base-ca-v2-cased-sts** model can be used to assess the similarity between two snippets of text. The model is limited by its training dataset and may not generalize well for all use cases.

## How to use
To get the correct<sup>1</sup> model's prediction scores with values between 0.0 and 5.0, use the following code:

```python
from transformers import pipeline, AutoTokenizer
from scipy.special import logit

model = 'projecte-aina/roberta-base-ca-v2-cased-sts'
tokenizer = AutoTokenizer.from_pretrained(model)
pipe = pipeline('text-classification', model=model, tokenizer=tokenizer)

def prepare(sentence_pairs):
    sentence_pairs_prep = []
    for s1, s2 in sentence_pairs:
        sentence_pairs_prep.append(f"{tokenizer.cls_token} {s1}{tokenizer.sep_token}{tokenizer.sep_token} {s2}{tokenizer.sep_token}")
    return sentence_pairs_prep

sentence_pairs = [("El llibre va caure per la finestra.", "El llibre va sortir volant."),
                  ("M'agrades.", "T'estimo."),
                  ("M'agrada el sol i la calor", "A la Garrotxa plou molt.")]

predictions = pipe(prepare(sentence_pairs), add_special_tokens=False)

# convert back to scores to the original 0 and 5 interval
for prediction in predictions:
    prediction['score'] = logit(prediction['score'])
print(predictions)
```
Expected output:
```
[{'label': 'SIMILARITY', 'score': 2.118301674983813}, 
{'label': 'SIMILARITY', 'score': 2.1799755855125853}, 
{'label': 'SIMILARITY', 'score': 0.9511617858568939}]
```

<sup>1</sup> _**avoid using the widget** scores since they are normalized and do not reflect the original annotation values._

## Training

### Training data
We used the STS dataset in Catalan called [STS-ca](https://huggingface.co/datasets/projecte-aina/sts-ca) for training and evaluation.

### Training Procedure
The model was trained with a batch size of 16 and a learning rate of 5e-5 for 5 epochs. We then selected the best checkpoint using the downstream task metric in the corresponding development set, and then evaluated it on the test set.

## Evaluation

### Variable and Metrics

This model was finetuned maximizing the average score between the Pearson and Spearman correlations.

## Evaluation results
We evaluated the _roberta-base-ca-v2-cased-sts_ on the STS-ca test set against standard multilingual and monolingual baselines:

| Model       | STS-ca (Combined score)   | 
| ------------|:-------------|
| roberta-base-ca-v2-cased-sts | 79.07 |
| roberta-base-ca-cased-sts | **80.19** |
| mBERT       | 74.26 |
| XLM-RoBERTa | 61.61 |

For more details, check the fine-tuning and evaluation scripts in the official [GitHub repository](https://github.com/projecte-aina/club).

## Licensing Information

[Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0)

## Citation Information 
If you use any of these resources (datasets or models) in your work, please cite our latest paper:
```bibtex
@inproceedings{armengol-estape-etal-2021-multilingual,
    title = "Are Multilingual Models the Best Choice for Moderately Under-resourced Languages? {A} Comprehensive Assessment for {C}atalan",
    author = "Armengol-Estap{\'e}, Jordi  and
      Carrino, Casimiro Pio  and
      Rodriguez-Penagos, Carlos  and
      de Gibert Bonet, Ona  and
      Armentano-Oller, Carme  and
      Gonzalez-Agirre, Aitor  and
      Melero, Maite  and
      Villegas, Marta",
    booktitle = "Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021",
    month = aug,
    year = "2021",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2021.findings-acl.437",
    doi = "10.18653/v1/2021.findings-acl.437",
    pages = "4933--4946",
}
```

### Funding
This work was funded by the [Departament de la Vicepresidència i de Polítiques Digitals i Territori de la Generalitat de Catalunya](https://politiquesdigitals.gencat.cat/ca/inici/index.html#googtrans(ca|en) within the framework of [Projecte AINA](https://politiquesdigitals.gencat.cat/ca/economia/catalonia-ai/aina).

## Contributions

[N/A]