File size: 10,171 Bytes
9f80eba
 
 
1b2a8e4
9f80eba
417eb15
 
 
 
 
 
 
9f80eba
 
417eb15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f80eba
 
ef67d4a
9f80eba
cc9dd3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7cfdd32
9f80eba
cc9dd3d
 
 
9f80eba
cc9dd3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f80eba
 
 
 
 
 
 
 
 
 
 
 
0866ada
9f80eba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc9dd3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec70e48
9f80eba
 
 
 
 
 
 
 
 
 
cc9dd3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
---
language: ca
datasets:
- projecte-aina/3catparla_asr
tags:
- audio
- automatic-speech-recognition
- catalan
- whisper-large-v3
- projecte-aina
- barcelona-supercomputing-center
- bsc
license: apache-2.0
model-index:
- name: whisper-large-v3-ca-3catparla
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: 3CatParla (Test)
      type: projecte-aina/3catparla_asr
      split: test
      args:
        language: ca
    metrics:
    - name: WER
      type: wer
      value: 0.96
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: 3CatParla (Dev)
      type: projecte-aina/3catparla_asr
      split: dev
      args:
        language: ca
    metrics:
    - name: WER
      type: wer
      value: 0.92
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Mozilla Common Voice 17.0 (Test)
      type: mozilla-foundation/common_voice_17_0
      split: test
      args:
        language: ca
    metrics:
    - name: WER
      type: wer
      value: 10.32
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Mozilla Common Voice 17.0 (Dev)
      type: mozilla-foundation/common_voice_17_0
      split: validation
      args:
        language: ca
    metrics:
    - name: WER
      type: wer
      value: 9.26
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: CV Benchmark Catalan Accents (Balearic fem)
      type: projecte-aina/commonvoice_benchmark_catalan_accents
      split: Balearic female
      args:
        language: ca
    metrics:
    - name: WER
      type: wer
      value: 12.25
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: CV Benchmark Catalan Accents (Balearic male)
      type: projecte-aina/commonvoice_benchmark_catalan_accents
      split: Balearic male
      args:
        language: ca
    metrics:
    - name: WER
      type: wer
      value: 12.18
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: CV Benchmark Catalan Accents (Central fem)
      type: projecte-aina/commonvoice_benchmark_catalan_accents
      split: Central female
      args:
        language: ca
    metrics:
    - name: WER
      type: wer
      value: 8.51
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: CV Benchmark Catalan Accents (Central male)
      type: projecte-aina/commonvoice_benchmark_catalan_accents
      split: Central male
      args:
        language: ca
    metrics:
    - name: WER
      type: wer
      value: 8.73
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: CV Benchmark Catalan Accents (Northern fem)
      type: projecte-aina/commonvoice_benchmark_catalan_accents
      split: Northern female
      args:
        language: ca
    metrics:
    - name: WER
      type: wer
      value: 8.09
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: CV Benchmark Catalan Accents (Northern male)
      type: projecte-aina/commonvoice_benchmark_catalan_accents
      split: Northern male
      args:
        language: ca
    metrics:
    - name: WER
      type: wer
      value: 8.28
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: CV Benchmark Catalan Accents (Northwestern fem)
      type: projecte-aina/commonvoice_benchmark_catalan_accents
      split: Northwestern female
      args:
        language: ca
    metrics:
    - name: WER
      type: wer
      value: 7.88
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: CV Benchmark Catalan Accents (Northwestern male)
      type: projecte-aina/commonvoice_benchmark_catalan_accents
      split: Northwestern male
      args:
        language: ca
    metrics:
    - name: WER
      type: wer
      value: 8.44
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: CV Benchmark Catalan Accents (Valencian fem)
      type: projecte-aina/commonvoice_benchmark_catalan_accents
      split: Valencian female
      args:
        language: ca
    metrics:
    - name: WER
      type: wer
      value: 9.58
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: CV Benchmark Catalan Accents (Valencian male)
      type: projecte-aina/commonvoice_benchmark_catalan_accents
      split: Valencian male
      args:
        language: ca
    metrics:
    - name: WER
      type: wer
      value: 9.1
library_name: transformers
---
# whisper-large-v3-ca-3catparla
- **Paper:** [3CatParla: A New Open-Source Corpus of Broadcast TV in Catalan for Automatic Speech Recognition](https://iberspeech.tech/)

## Table of Contents
<details>
<summary>Click to expand</summary>

- [Model description](#model-description)
- [Intended uses and limitations](#intended-uses-and-limitations)
- [How to use](#how-to-use)
- [Training](#training)
- [Evaluation](#evaluation)
- [Citation](#citation)
- [Additional information](#additional-information)

</details>

## Summary

The "whisper-large-v3-ca-3catparla" is an acoustic model based on ["openai/whisper-large-v3"](https://huggingface.co/openai/whisper-large-v3) suitable for Automatic Speech Recognition in Catalan.

## Model Description

The "whisper-large-v3-ca-3catparla" is an acoustic model suitable for Automatic Speech Recognition in Catalan. It is the result of finetuning the model ["openai/whisper-large-v3"](https://huggingface.co/openai/whisper-large-v3) with 710 hours of Catalan data released by the [Projecte AINA](https://projecteaina.cat/) from Barcelona, Spain.

## Intended Uses and Limitations

This model can used for Automatic Speech Recognition (ASR) in Catalan. The model is intended to transcribe audio files in Catalan to plain text without punctuation.

## How to Get Started with the Model

### Installation

In order to use this model, you may install [datasets](https://huggingface.co/docs/datasets/installation) and [transformers](https://huggingface.co/docs/transformers/installation):

Create a virtual environment:
```bash
python -m venv /path/to/venv
```
Activate the environment:
```bash
source /path/to/venv/bin/activate
```
Install the modules:
```bash
pip install datasets transformers 
```

### For Inference
In order to transcribe audio in Catalan using this model, you can follow this example:

```python
import torch
from transformers import WhisperForConditionalGeneration, WhisperProcessor

#Load the processor and model.
MODEL_NAME="projecte-aina/whisper-large-v3-ca-3catparla"
processor = WhisperProcessor.from_pretrained(MODEL_NAME)
model = WhisperForConditionalGeneration.from_pretrained(MODEL_NAME).to("cuda")

#Load the dataset
from datasets import load_dataset, load_metric, Audio
ds=load_dataset("projecte-aina/3catparla_asr",split='test')

#Downsample to 16kHz
ds = ds.cast_column("audio", Audio(sampling_rate=16_000))

#Process the dataset
def map_to_pred(batch):
	audio = batch["audio"]
	input_features = processor(audio["array"], sampling_rate=audio["sampling_rate"], return_tensors="pt").input_features
	batch["reference"] = processor.tokenizer._normalize(batch['normalized_text'])

	with torch.no_grad():
		predicted_ids = model.generate(input_features.to("cuda"))[0]
	
	transcription = processor.decode(predicted_ids)
	batch["prediction"] = processor.tokenizer._normalize(transcription)
	
	return batch
	
#Do the evaluation
result = ds.map(map_to_pred)

#Compute the overall WER now.
from evaluate import load

wer = load("wer")
WER=100 * wer.compute(references=result["reference"], predictions=result["prediction"])
print(WER)
```
**Test Result**: 0.96

## Training Details

### Training data

The specific dataset used to create the model is called ["3CatParla"](https://huggingface.co/datasets/projecte-aina/3catparla_asr).

### Training procedure

This model is the result of finetuning the model ["openai/whisper-large-v3"](https://huggingface.co/openai/whisper-large-v3) by following this [tutorial](https://huggingface.co/blog/fine-tune-whisper) provided by Hugging Face.

### Training Hyperparameters

* language: catalan
* hours of training audio: 710
* learning rate: 1.95e-07
* sample rate: 16000
* train batch size: 32 (x4 GPUs)
  * gradient accumulation steps: 1
* eval batch size: 32
* save total limit: 3
* max steps: 19842
* warmup steps: 1984
* eval steps: 3307
* save steps: 3307
* shuffle buffer size: 480

## Citation
If this model contributes to your research, please cite the work:
```bibtex
@misc{mena2024whisperlarge3catparla,
      title={Acoustic Model in Catalan: whisper-large-v3-ca-3catparla.}, 
      author={Hernandez Mena, Carlos Daniel},
      organization={Barcelona Supercomputing Center},
      url={https://huggingface.co/projecte-aina/whisper-large-v3-ca-3catparla},
      year={2024}
}
```

## Additional Information

### Author

The fine-tuning process was perform during July (2024) in the [Language Technologies Unit](https://huggingface.co/BSC-LT) of the [Barcelona Supercomputing Center](https://www.bsc.es/) by [Carlos Daniel Hernández Mena](https://huggingface.co/carlosdanielhernandezmena).

### Contact
For further information, please send an email to <[email protected]>.

### Copyright
Copyright(c) 2024 by Language Technologies Unit, Barcelona Supercomputing Center.

### License

[Apache-2.0](https://www.apache.org/licenses/LICENSE-2.0)

### Funding
This work has been promoted and financed by the Generalitat de Catalunya through the [Aina project](https://projecteaina.cat/).

The training of the model was possible thanks to the compute time provided by [Barcelona Supercomputing Center](https://www.bsc.es/) through MareNostrum 5.