File size: 10,171 Bytes
9f80eba 1b2a8e4 9f80eba 417eb15 9f80eba 417eb15 9f80eba ef67d4a 9f80eba cc9dd3d 7cfdd32 9f80eba cc9dd3d 9f80eba cc9dd3d 9f80eba 0866ada 9f80eba cc9dd3d ec70e48 9f80eba cc9dd3d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 |
---
language: ca
datasets:
- projecte-aina/3catparla_asr
tags:
- audio
- automatic-speech-recognition
- catalan
- whisper-large-v3
- projecte-aina
- barcelona-supercomputing-center
- bsc
license: apache-2.0
model-index:
- name: whisper-large-v3-ca-3catparla
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: 3CatParla (Test)
type: projecte-aina/3catparla_asr
split: test
args:
language: ca
metrics:
- name: WER
type: wer
value: 0.96
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: 3CatParla (Dev)
type: projecte-aina/3catparla_asr
split: dev
args:
language: ca
metrics:
- name: WER
type: wer
value: 0.92
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Mozilla Common Voice 17.0 (Test)
type: mozilla-foundation/common_voice_17_0
split: test
args:
language: ca
metrics:
- name: WER
type: wer
value: 10.32
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Mozilla Common Voice 17.0 (Dev)
type: mozilla-foundation/common_voice_17_0
split: validation
args:
language: ca
metrics:
- name: WER
type: wer
value: 9.26
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: CV Benchmark Catalan Accents (Balearic fem)
type: projecte-aina/commonvoice_benchmark_catalan_accents
split: Balearic female
args:
language: ca
metrics:
- name: WER
type: wer
value: 12.25
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: CV Benchmark Catalan Accents (Balearic male)
type: projecte-aina/commonvoice_benchmark_catalan_accents
split: Balearic male
args:
language: ca
metrics:
- name: WER
type: wer
value: 12.18
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: CV Benchmark Catalan Accents (Central fem)
type: projecte-aina/commonvoice_benchmark_catalan_accents
split: Central female
args:
language: ca
metrics:
- name: WER
type: wer
value: 8.51
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: CV Benchmark Catalan Accents (Central male)
type: projecte-aina/commonvoice_benchmark_catalan_accents
split: Central male
args:
language: ca
metrics:
- name: WER
type: wer
value: 8.73
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: CV Benchmark Catalan Accents (Northern fem)
type: projecte-aina/commonvoice_benchmark_catalan_accents
split: Northern female
args:
language: ca
metrics:
- name: WER
type: wer
value: 8.09
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: CV Benchmark Catalan Accents (Northern male)
type: projecte-aina/commonvoice_benchmark_catalan_accents
split: Northern male
args:
language: ca
metrics:
- name: WER
type: wer
value: 8.28
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: CV Benchmark Catalan Accents (Northwestern fem)
type: projecte-aina/commonvoice_benchmark_catalan_accents
split: Northwestern female
args:
language: ca
metrics:
- name: WER
type: wer
value: 7.88
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: CV Benchmark Catalan Accents (Northwestern male)
type: projecte-aina/commonvoice_benchmark_catalan_accents
split: Northwestern male
args:
language: ca
metrics:
- name: WER
type: wer
value: 8.44
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: CV Benchmark Catalan Accents (Valencian fem)
type: projecte-aina/commonvoice_benchmark_catalan_accents
split: Valencian female
args:
language: ca
metrics:
- name: WER
type: wer
value: 9.58
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: CV Benchmark Catalan Accents (Valencian male)
type: projecte-aina/commonvoice_benchmark_catalan_accents
split: Valencian male
args:
language: ca
metrics:
- name: WER
type: wer
value: 9.1
library_name: transformers
---
# whisper-large-v3-ca-3catparla
- **Paper:** [3CatParla: A New Open-Source Corpus of Broadcast TV in Catalan for Automatic Speech Recognition](https://iberspeech.tech/)
## Table of Contents
<details>
<summary>Click to expand</summary>
- [Model description](#model-description)
- [Intended uses and limitations](#intended-uses-and-limitations)
- [How to use](#how-to-use)
- [Training](#training)
- [Evaluation](#evaluation)
- [Citation](#citation)
- [Additional information](#additional-information)
</details>
## Summary
The "whisper-large-v3-ca-3catparla" is an acoustic model based on ["openai/whisper-large-v3"](https://huggingface.co/openai/whisper-large-v3) suitable for Automatic Speech Recognition in Catalan.
## Model Description
The "whisper-large-v3-ca-3catparla" is an acoustic model suitable for Automatic Speech Recognition in Catalan. It is the result of finetuning the model ["openai/whisper-large-v3"](https://huggingface.co/openai/whisper-large-v3) with 710 hours of Catalan data released by the [Projecte AINA](https://projecteaina.cat/) from Barcelona, Spain.
## Intended Uses and Limitations
This model can used for Automatic Speech Recognition (ASR) in Catalan. The model is intended to transcribe audio files in Catalan to plain text without punctuation.
## How to Get Started with the Model
### Installation
In order to use this model, you may install [datasets](https://huggingface.co/docs/datasets/installation) and [transformers](https://huggingface.co/docs/transformers/installation):
Create a virtual environment:
```bash
python -m venv /path/to/venv
```
Activate the environment:
```bash
source /path/to/venv/bin/activate
```
Install the modules:
```bash
pip install datasets transformers
```
### For Inference
In order to transcribe audio in Catalan using this model, you can follow this example:
```python
import torch
from transformers import WhisperForConditionalGeneration, WhisperProcessor
#Load the processor and model.
MODEL_NAME="projecte-aina/whisper-large-v3-ca-3catparla"
processor = WhisperProcessor.from_pretrained(MODEL_NAME)
model = WhisperForConditionalGeneration.from_pretrained(MODEL_NAME).to("cuda")
#Load the dataset
from datasets import load_dataset, load_metric, Audio
ds=load_dataset("projecte-aina/3catparla_asr",split='test')
#Downsample to 16kHz
ds = ds.cast_column("audio", Audio(sampling_rate=16_000))
#Process the dataset
def map_to_pred(batch):
audio = batch["audio"]
input_features = processor(audio["array"], sampling_rate=audio["sampling_rate"], return_tensors="pt").input_features
batch["reference"] = processor.tokenizer._normalize(batch['normalized_text'])
with torch.no_grad():
predicted_ids = model.generate(input_features.to("cuda"))[0]
transcription = processor.decode(predicted_ids)
batch["prediction"] = processor.tokenizer._normalize(transcription)
return batch
#Do the evaluation
result = ds.map(map_to_pred)
#Compute the overall WER now.
from evaluate import load
wer = load("wer")
WER=100 * wer.compute(references=result["reference"], predictions=result["prediction"])
print(WER)
```
**Test Result**: 0.96
## Training Details
### Training data
The specific dataset used to create the model is called ["3CatParla"](https://huggingface.co/datasets/projecte-aina/3catparla_asr).
### Training procedure
This model is the result of finetuning the model ["openai/whisper-large-v3"](https://huggingface.co/openai/whisper-large-v3) by following this [tutorial](https://huggingface.co/blog/fine-tune-whisper) provided by Hugging Face.
### Training Hyperparameters
* language: catalan
* hours of training audio: 710
* learning rate: 1.95e-07
* sample rate: 16000
* train batch size: 32 (x4 GPUs)
* gradient accumulation steps: 1
* eval batch size: 32
* save total limit: 3
* max steps: 19842
* warmup steps: 1984
* eval steps: 3307
* save steps: 3307
* shuffle buffer size: 480
## Citation
If this model contributes to your research, please cite the work:
```bibtex
@misc{mena2024whisperlarge3catparla,
title={Acoustic Model in Catalan: whisper-large-v3-ca-3catparla.},
author={Hernandez Mena, Carlos Daniel},
organization={Barcelona Supercomputing Center},
url={https://huggingface.co/projecte-aina/whisper-large-v3-ca-3catparla},
year={2024}
}
```
## Additional Information
### Author
The fine-tuning process was perform during July (2024) in the [Language Technologies Unit](https://huggingface.co/BSC-LT) of the [Barcelona Supercomputing Center](https://www.bsc.es/) by [Carlos Daniel Hernández Mena](https://huggingface.co/carlosdanielhernandezmena).
### Contact
For further information, please send an email to <[email protected]>.
### Copyright
Copyright(c) 2024 by Language Technologies Unit, Barcelona Supercomputing Center.
### License
[Apache-2.0](https://www.apache.org/licenses/LICENSE-2.0)
### Funding
This work has been promoted and financed by the Generalitat de Catalunya through the [Aina project](https://projecteaina.cat/).
The training of the model was possible thanks to the compute time provided by [Barcelona Supercomputing Center](https://www.bsc.es/) through MareNostrum 5.
|