Fill-Mask
Transformers
PyTorch
bert
Generated from Trainer
Inference Endpoints
indobert-nusa / README.md
tisorlawan's picture
feat: add readme and license
443b1d7
|
raw
history blame
2.98 kB
---
license: mit
base_model: indobenchmark/indobert-large-p2
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: out
results: []
---
# IndoBERT-nusa (IndoBERT Adapted for Balinese, Buginese, and Minangkabau)
This repository contains a language adaptation and fine-tuning of the Indobenchmark IndoBERT language model for three specific languages: Balinese, Buginese, and Minangkabau.
The adaptation was performed using nusa-st data.
## Model Details
- **Base Model**: [indobenchmark/indobert-large-p2](https://huggingface.co/indobenchmark/indobert-large-p2)
- **Adaptation Data**: nusa-st
## Performance Comparison
### Topic Classification
Fine-tuned using [nusa-dialogue](https://huggingface.co/datasets/prosa-text/nusa-dialogue) for topic classification.
| Language | indobert-large-p2 (F1) | indobert-nusa (F1) |
|-------------|------------------------|------------------------|
| Balinese | 82.37 | **84.23** |
| Buginese | 80.53 | **82.03** |
| Minangkabau | 84.49 | **86.30** |
### Language Identification
Fine-tuned using [nusaX](https://github.com/IndoNLP/nusax) for language classification.
| Model | F1-score |
|----------------------|--------------|
| indobert-large-p2 | 98.21 |
| **indober-nusa** | **98.45** |
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Framework versions
- Transformers 4.33.1
- Pytorch 2.1.2+cu121
- Datasets 2.16.1
- Tokenizers 0.13.3
## Additional Information
### Licensing Information
The dataset is released under the terms of **CC-BY-SA 4.0**.
By using this model, you are also bound to the respective Terms of Use and License of the dataset.
### Citation Information
```bibtex
@article{purwarianti2023nusadialogue,
title={NusaDialogue: Dialogue Summarization and Generation for Underrepresented and Extremely Low-Resource Languages},
author={Purwarianti, Ayu and Adhista, Dea and Baptiso, Agung and Mahfuzh, Miftahul and Yusrina Sabila and Cahyawijaya, Samuel and Aji, Alham Fikri},
journal={arXiv preprint arXiv:(coming soon)},
url={https://huggingface.co/datasets/prosa-text/nusa-dialogue},
year={2023}
}
```
### Acknowledgement
This research work is funded and supported by The Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH and FAIR Forward - Artificial Intelligence for all. We thank Direktorat Jenderal Pendidikan Tinggi, Riset, dan Teknologi Kementerian Pendidikan, Kebudayaan, Riset, dan Teknologi (Ditjen DIKTI) for providing the computing resources for this project.
### Contact Us
If you have any question please contact our support team at `[email protected]`.