Edit model card

license: mit

Model Description

Model created with OpenNMT-py 3.2 for the Spanish-Aragonese pair using a transformer architecture. The model was converted to the ctranslate2 format. This model was trained for the paper Training and fine-tuning NMT models for low-resource languages using Apertium-based synthetic corpora

How to Translate with this Model

  • Install Python 3.9
  • Install ctranslate 3.2
  • Translate an input_text using the NOS-MT-es-arg model with the following command:
    perl tokenizer.perl < input.txt > input.tok
    subword_nmt.apply_bpe -c ./bpe/es.bpe < input.tok > input.bpe
    python3 translate.py ./ct2-arg input.bpe > output.txt
    sed -i 's/@@ //g' output.txt

Citation

If you use this model in your research, please cite the following paper: Sant, A., Bardanca Outeiriño, D., Pichel Campos, J. R., De Luca Fornaciari, F., Escolano, C., García Gilabert, J., Gamallo Otero, P., Mash, A., Liao, X., & Melero, M. (2023). Training and fine-tuning NMT models for low-resource languages using Apertium-based synthetic corpora. arXiv.

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference API
Unable to determine this model's library. Check the docs .

Collection including proxectonos/es-arg