See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: Qwen/Qwen2.5-3B-Instruct
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- cd2ead58134fa71e_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/cd2ead58134fa71e_train_data.json
type:
field_instruction: source
field_output: target
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
device_map: auto
do_eval: true
early_stopping_patience: null
eval_batch_size: 2
eval_max_new_tokens: 128
eval_steps: null
eval_table_size: null
evals_per_epoch: 4
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: true
hub_model_id: prxy5604/59a2f3bc-5f85-4a86-842d-2e35f769598d
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 5
lora_alpha: 128
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_memory:
0: 75GB
max_steps: 200
micro_batch_size: 4
mlflow_experiment_name: /tmp/cd2ead58134fa71e_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: null
saves_per_epoch: null
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 1559d98e-1fed-41c2-8ba2-72b6489efca4
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 1559d98e-1fed-41c2-8ba2-72b6489efca4
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
59a2f3bc-5f85-4a86-842d-2e35f769598d
This model is a fine-tuned version of Qwen/Qwen2.5-3B-Instruct on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.8736
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 95
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0317 | 1 | 3.3631 |
3.1644 | 0.2540 | 8 | 2.9340 |
2.5505 | 0.5079 | 16 | 2.1190 |
2.2072 | 0.7619 | 24 | 1.9973 |
1.9066 | 1.0159 | 32 | 1.8940 |
1.5955 | 1.2698 | 40 | 1.8810 |
1.6197 | 1.5238 | 48 | 1.8771 |
1.6287 | 1.7778 | 56 | 1.8360 |
1.579 | 2.0317 | 64 | 1.7921 |
1.2425 | 2.2857 | 72 | 1.8616 |
1.3189 | 2.5397 | 80 | 1.8305 |
1.1198 | 2.7937 | 88 | 1.8736 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 10