|
--- |
|
tags: |
|
- bertopic |
|
- summcomparer |
|
- document_text |
|
library_name: bertopic |
|
pipeline_tag: text-classification |
|
inference: false |
|
license: apache-2.0 |
|
datasets: |
|
- pszemraj/summcomparer-gauntlet-v0p1 |
|
language: |
|
- en |
|
--- |
|
|
|
# BERTopic-summcomparer-gauntlet-v0p1-all-roberta-large-v1-document_text |
|
|
|
This is a [BERTopic](https://github.com/MaartenGr/BERTopic) model. |
|
BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets. |
|
|
|
![doc-chunk-topics](document-chunk-topics.png) |
|
|
|
## Usage |
|
|
|
To use this model, please install BERTopic: |
|
|
|
``` |
|
pip install -U bertopic safetensors |
|
``` |
|
|
|
You can use the model as follows: |
|
|
|
```python |
|
from bertopic import BERTopic |
|
topic_model = BERTopic.load("pszemraj/BERTopic-summcomparer-gauntlet-v0p1-all-roberta-large-v1-document_text") |
|
|
|
topic_model.get_topic_info() |
|
``` |
|
|
|
## Topic overview |
|
|
|
* Number of topics: 17 |
|
* Number of training documents: 995 |
|
|
|
<details> |
|
<summary>Click here for an overview of all topics.</summary> |
|
|
|
| Topic ID | Topic Keywords | Topic Frequency | Label | |
|
|----------|----------------|-----------------|-------| |
|
| -1 | clustering - convolutional - neural - hierarchical - autoregressive | 11 | -1_clustering_convolutional_neural_hierarchical | |
|
| 0 | betty - door - her - gillis - room | 15 | 0_betty_door_her_gillis | |
|
| 1 | frozen - anna - snow - hans - elsa | 241 | 1_frozen_anna_snow_hans | |
|
| 2 | closeup - shot - viewpoint - umpire - camera | 211 | 2_closeup_shot_viewpoint_umpire | |
|
| 3 | dory - gill - coral - marlin - ocean | 171 | 3_dory_gill_coral_marlin | |
|
| 4 | operations - structure - operation - theory - interpretation | 60 | 4_operations_structure_operation_theory | |
|
| 5 | spatial - identity - movement - identities - noir | 59 | 5_spatial_identity_movement_identities | |
|
| 6 | vocabulary - words - topic - text - topics | 45 | 6_vocabulary_words_topic_text | |
|
| 7 | encoder - captions - embeddings - decoder - caption | 40 | 7_encoder_captions_embeddings_decoder | |
|
| 8 | saw - hounds - smiled - had - hunt | 26 | 8_saw_hounds_smiled_had | |
|
| 9 | learning - assignment - data - research - project | 22 | 9_learning_assignment_data_research | |
|
| 10 | cogvideo - videos - videogpt - video - clips | 21 | 10_cogvideo_videos_videogpt_video | |
|
| 11 | lstm - recurrent - encoder - seq2seq - neural | 18 | 11_lstm_recurrent_encoder_seq2seq | |
|
| 12 | improve - next - do - going - good | 17 | 12_improve_next_do_going | |
|
| 13 | vocoding - spectrogram - enhancement - melspectrogram - audio | 14 | 13_vocoding_spectrogram_enhancement_melspectrogram | |
|
| 14 | probabilities - tagging - probability - words - gram | 12 | 14_probabilities_tagging_probability_words | |
|
| 15 | convolutional - segmentation - superpixel - convolutions - superpixels | 12 | 15_convolutional_segmentation_superpixel_convolutions | |
|
|
|
</details> |
|
|
|
### hierarchy |
|
|
|
![h](https://i.imgur.com/TLa6jXT.png) |
|
|
|
|
|
## Training hyperparameters |
|
|
|
* calculate_probabilities: True |
|
* language: None |
|
* low_memory: False |
|
* min_topic_size: 10 |
|
* n_gram_range: (1, 1) |
|
* nr_topics: None |
|
* seed_topic_list: None |
|
* top_n_words: 10 |
|
* verbose: True |
|
|
|
## Framework versions |
|
|
|
* Numpy: 1.22.4 |
|
* HDBSCAN: 0.8.29 |
|
* UMAP: 0.5.3 |
|
* Pandas: 1.5.3 |
|
* Scikit-Learn: 1.2.2 |
|
* Sentence-transformers: 2.2.2 |
|
* Transformers: 4.29.2 |
|
* Numba: 0.56.4 |
|
* Plotly: 5.13.1 |
|
* Python: 3.10.11 |