language:
- en
license:
- cc-by-nc-sa-4.0
- apache-2.0
tags:
- grammar
- spelling
- punctuation
- error-correction
- grammar synthesis
datasets:
- jfleg
widget:
- text: There car broke down so their hitching a ride to they're class.
example_title: compound-1
- text: i can has cheezburger
example_title: cheezburger
- text: >-
so em if we have an now so with fito ringina know how to estimate the tren
given the ereafte mylite trend we can also em an estimate is nod s i again
tort watfettering an we have estimated the trend an called wot to be
called sthat of exty right now we can and look at wy this should not hare
a trend i becan we just remove the trend an and we can we now estimate
tesees ona effect of them exty
example_title: Transcribed Audio Example 2
- text: >-
My coworker said he used a financial planner to help choose his stocks so
he wouldn't loose money.
example_title: incorrect word choice (context)
- text: >-
good so hve on an tadley i'm not able to make it to the exla session on
monday this week e which is why i am e recording pre recording an this
excelleision and so to day i want e to talk about two things and first of
all em i wont em wene give a summary er about ta ohow to remove trents in
these nalitives from time series
example_title: lowercased audio transcription output
- text: Frustrated, the chairs took me forever to set up.
example_title: dangling modifier
- text: I would like a peice of pie.
example_title: miss-spelling
- text: >-
Which part of Zurich was you going to go hiking in when we were there for
the first time together? ! ?
example_title: chatbot on Zurich
- text: >-
Most of the course is about semantic or content of language but there are
also interesting topics to be learned from the servicefeatures except
statistics in characters in documents. At this point, Elvthos introduces
himself as his native English speaker and goes on to say that if you
continue to work on social scnce,
example_title: social science ASR summary output
- text: >-
they are somewhat nearby right yes please i'm not sure how the innish is
tepen thut mayyouselect one that istatte lo variants in their property e
ere interested and anyone basical e may be applyind reaching the browing
approach were
- medical course audio transcription
inference: false
pipeline_tag: text2text-generation
base_model: facebook/bart-base
bart-base-grammar-synthesis
This model is a fine-tuned version of facebook/bart-base on an expanded version of the JFLEG dataset.
You can find other grammar-synthesis models by searching for the grammar synthesis tag
Basic Usage Example
Installation
First, make sure you have the transformers
package installed. You can install it using pip:
pip install -U transformers
Usage
from transformers import pipeline
# Initialize the text-generation pipeline for text correction
corrector = pipeline("text2text-generation", "pszemraj/bart-base-grammar-synthesis")
# Example text to correct
raw_text = "The toweris 324 met (1,063 ft) tall, about height as .An 81-storey building, and biggest longest structure paris. Is square, measuring 125 metres (410 ft) on each side. During its constructiothe eiffel tower surpassed the washington monument to become the tallest man-made structure in the world, a title it held for 41 yearsuntilthe chryslerbuilding in new york city was finished in 1930. It was the first structure to goat a height of 300 metres. Due 2 the addition ofa brdcasting aerial at the t0pp of the twr in 1957, it now taller than chrysler building 5.2 metres (17 ft). Exxxcluding transmitters, eiffel tower is 2ndd tallest ree-standing structure in france after millau viaduct."
# Correct the text using the text-generation pipeline
corrected_text = corrector(raw_text)[0]["generated_text"]
# Print the corrected text
print(corrected_text)
This example demonstrates how to use the text-generation pipeline to correct the grammar in a given text. The corrector
pipeline is initialized with the "pszemraj/bart-base-grammar-synthesis" model, which is designed for grammar correction. The corrector
pipeline takes the raw text as input and returns the corrected text. Make sure to install the required dependencies and models before running the code.
Intended uses & limitations
- robust grammar correction
- the model has a license of
cc-by-nc-sa-4.0
as it uses the JFLEG dataset + augments it for training
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.02
- num_epochs: 3.0