dinov2-small: types of film shots

Model description

This model is a fine-tuned version of facebook/dinov2-small on the szymonrucinski/types-of-film-shots dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9864
  • Accuracy: 0.6259

class labels

The dataset contains the following labels:

"id2label": {
    "0": "ambiguous",
    "1": "closeUp",
    "2": "detail",
    "3": "extremeLongShot",
    "4": "fullShot",
    "5": "longShot",
    "6": "mediumCloseUp",
    "7": "mediumShot"
  },

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 17480
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.05
  • num_epochs: 12.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.6177 0.97 24 1.5501 0.4101
1.3029 1.99 49 1.2448 0.5108
1.1785 2.96 73 1.0556 0.5252
1.2146 3.98 98 1.2316 0.5396
0.8389 4.99 123 1.0235 0.5971
0.7883 5.97 147 0.9960 0.6259
0.7899 6.98 172 1.1354 0.5540
0.663 8.0 197 1.0971 0.5827
0.6013 8.97 221 0.9864 0.6259
0.6276 9.99 246 1.0182 0.6115
0.5196 10.96 270 1.0074 0.6547
0.4761 11.7 288 0.9956 0.6763

Framework versions

  • Transformers 4.38.0.dev0
  • Pytorch 2.2.0+cu121
  • Datasets 2.17.1
  • Tokenizers 0.15.2
Downloads last month
18
Safetensors
Model size
22.1M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for pszemraj/dinov2-small-film-shot-classifier

Finetuned
(5)
this model

Dataset used to train pszemraj/dinov2-small-film-shot-classifier