metadata
license: apache-2.0
base_model: google/long-t5-tglobal-base
tags:
- generated_from_trainer
- synthsumm
metrics:
- rouge
datasets:
- pszemraj/synthsumm
language:
- en
pipeline_tag: summarization
long-t5-tglobal-base-synthsumm_direct
Fine-tuned on a synthetic dataset of curated long-context text and GPT-3.5-turbo-1106
summaries spanning multiple domains, including "random" long-context examples from redpajama, the pile, etc.
- Note: this model has not been fine-tuned on any other summarization datasets, just the
synthsumm
data
Try it out in the gradio demo
Model description
This model is a fine-tuned version of google/long-t5-tglobal-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.4378
- Rouge1: 48.0918
- Rouge2: 21.2531
- Rougel: 34.4307
- Rougelsum: 43.0271
- Gen Len: 84.5231
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 1
- eval_batch_size: 1
- seed: 26605
- gradient_accumulation_steps: 8
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: inverse_sqrt
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 2.0
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
---|---|---|---|---|---|---|---|---|
1.9183 | 0.38 | 125 | 1.5762 | 38.7221 | 15.0873 | 28.3123 | 34.9655 | 129.2154 |
1.8815 | 0.77 | 250 | 1.5230 | 44.3531 | 17.9384 | 31.7417 | 39.5563 | 87.3538 |
1.7264 | 1.15 | 375 | 1.4735 | 45.7781 | 20.102 | 33.329 | 41.4737 | 101.9231 |
1.8545 | 1.54 | 500 | 1.4505 | 47.0134 | 20.6159 | 33.6118 | 41.6579 | 88.2308 |
1.7444 | 1.92 | 625 | 1.4378 | 48.0918 | 21.2531 | 34.4307 | 43.0271 | 84.5231 |
Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.1.0
- Datasets 2.15.0
- Tokenizers 0.15.0