SentenceTransformer based on nomic-ai/nomic-embed-text-v1
This is a sentence-transformers model finetuned from nomic-ai/nomic-embed-text-v1. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: nomic-ai/nomic-embed-text-v1
- Maximum Sequence Length: 8192 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: NomicBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("ptpedroVortal/nomic_vortal_v3.1")
# Run inference
sentences = [
'Collect the details that are associated with product \'\' \'Macbook Air 13" com processador M1/M2 e 8 GB de RAM (Telado PT-PT)\', with quantity 1, unit UN',
'Apresenta -se de seguida a configuração financeira para a fornecimento dos produtos \\nrequeridos , mediante opções por cor e diferentes características:\\nNOTA: Valores válidos até 23 de Fevereiro e mediante adjudicação de 2 ou mais \\nequipamentos portáteis (excluindo Teclado)\\nPART-NUMBER QTD. DESCRIÇÃOVALOR\\nUNITÁRIOVALOR\\nTOTAL\\nMLY03PO/A 1Apple Macbook AIR 13,6" (Disco 512GB SSD; 10 core) 1 545,08 € 1 545,08 €\\nMLXY3PO/A 1Apple Macbook AIR 13,6" (Disco 256GB SSD, 8 core) 1 227,48 € 1 227,48 €',
'LOTE 5\n1 MESA APOIO MESA DE APOIO EM INOX AISI 304 2,0 279,000 23,0 558,000\nMesa com 4 rodas , 2 com travão\nTabuleiro inferior\nDimens: C 700 x L 500 x A 800mm\nPrateleira inferior - profundidade 250mm\nFabrico Nacional e por medida\nTotal do do lote 5: 558,00€ Quinhentos e cinquenta e oito euros',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 222 training samples
- Columns:
query
andcorrect_node
- Approximate statistics based on the first 222 samples:
query correct_node type string string details - min: 15 tokens
- mean: 55.17 tokens
- max: 154 tokens
- min: 22 tokens
- mean: 109.22 tokens
- max: 2920 tokens
- Samples:
query correct_node Collect the details that are associated with Lot 4 product '' 'Mesas de Mayo', with quantity 2, unit Subcontracting Unit
LOTE 4
1 MESA DE MAYO 82JM 10.ME.1831 2,000 842,00000 23 1 684,00
oitocentos e quarenta e dois euros
Origem : Nacional
Marca : MOBIT
Prazo de entrega: 30 dias
Garantia: 2 anos
TransporteCollect the details that are associated with Lot 7 product '' 'Carro transporte de roupa suja ', with quantity 1, unit US
Lote 7 nan nan nan nan nan\nRef. Description Qt. Un. Un. Price Total\n9856 Carros para Transporte de Roupa Suja e Limpa 1 US 16.23 16.23</code>
Collect the details that are associated with product '' '2202000014 - FIO SUT. SEDA NÃO ABS. 2/0 MULTIF. SEM AGULHA (CART.)', with quantity 72, unit UN
2202000014 - FIO SUT. SEDA NÃO ABS. 2/0 MULTIF. SEM AGULHA (CART.) 0.36
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Evaluation Dataset
Unnamed Dataset
- Size: 27 evaluation samples
- Columns:
query
andcorrect_node
- Approximate statistics based on the first 27 samples:
query correct_node type string string details - min: 17 tokens
- mean: 56.85 tokens
- max: 121 tokens
- min: 40 tokens
- mean: 228.15 tokens
- max: 2963 tokens
- Samples:
query correct_node Collect the details that are associated with product '' '2202000055 - FIO SUT. POLIAMIDA NÃO ABS. 2/0 MONOF. AG. LANC. 39 MM 3/8 C (CART.)', with quantity 1656, unit UN
2202000055 - FIO SUT. POLIAMIDA NÃO ABS. 2/0 MONOF. AG. LANC. 39 MM 3/8 C (CART.) 1.28
Collect the details that are associated with Lot 3 product 'Portaria do Parque Coberto dos Olhos de Água' 'Vigilância e segurança humana contínua - Olhos de Água - período de 3 meses - todos os dias da semana, incluindo feriados, total estimado de 2754H', with quantity 1, unit UN
Collect the details that are associated with Lot 3 product 'Portaria do Parque Coberto dos Olhos de Água' 'Vigilância e segurança humana contínua - Olhos de Água - período de 3 meses - todos os dias da semana, incluindo feriados, total estimado de 2754H', with quantity 1, unit UN
Lote 3:\nPreço Unitário: 10,00€ (dez euros) /hora\nPreço Total: 27.540,00€ (vinte sete mil quinhentos e quarenta euros)
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16num_train_epochs
: 1warmup_ratio
: 0.1bf16
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Framework Versions
- Python: 3.10.14
- Sentence Transformers: 3.3.1
- Transformers: 4.47.0.dev0
- PyTorch: 2.5.1+cu121
- Accelerate: 1.1.1
- Datasets: 3.1.0
- Tokenizers: 0.20.4
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 10
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for ptpedroVortal/nomic_vortal_v3.1
Base model
nomic-ai/nomic-embed-text-v1