Edit model card

Portuguese NER- TempClinBr - BioBERTpt(clin)

Treinado com BioBERTpt(clin), com o corpus TempClinBr.

Metricas:

              precision    recall  f1-score   support

           0       1.00      0.85      0.92        33
           1       0.73      0.69      0.71        78
           2       0.75      0.55      0.63        11
           3       0.70      0.70      0.70        10
           4       0.90      1.00      0.95        71
           5       0.75      0.90      0.82       503
           6       0.83      0.90      0.87       112
           7       0.93      0.90      0.92      2236
           8       0.78      0.50      0.61        28
           9       0.82      0.84      0.83       291
          10       0.79      0.96      0.87       124
          11       0.82      0.73      0.77       420

    accuracy                           0.87      3917
   macro avg       0.82      0.79      0.80      3917
weighted avg       0.88      0.87      0.87      3917

Parâmetros:

device = cuda (Colab)
nclasses = len(tag2id)
nepochs = 50 => parou na 16
batch_size = 16
batch_status = 32
learning_rate = 3e-5

early_stop = 5
max_length = 256
write_path = 'model'

Eval no conjunto de teste - TempClinBr OBS: Avaliação com tag "O" (label 7), se necessário fazer a média sem essa tag.

tag2id ={'<pad>': 12,
 'B-DepartamentoClinico': 2,
 'B-Evidencia': 4,
 'B-Ocorrencia': 10,
 'B-Problema': 5,
 'B-Teste': 6,
 'B-Tratamento': 9,
 'I-DepartamentoClinico': 3,
 'I-Ocorrencia': 8,
 'I-Problema': 11,
 'I-Teste': 0,
 'I-Tratamento': 1,
 'O': 7}

              precision    recall  f1-score   support

           0       0.70      0.30      0.42        99
           1       0.84      0.75      0.79       146
           2       1.00      0.90      0.95        30
           3       0.93      0.93      0.93        14
           4       1.00      0.95      0.98       128
           5       0.83      0.97      0.89       713
           6       0.80      0.80      0.80       194
           7       0.93      0.93      0.93      2431
           8       0.56      0.20      0.29        51
           9       0.86      0.85      0.85       261
          10       0.77      0.88      0.82       146
          11       0.85      0.82      0.83       645
          12       0.00      0.00      0.00         0

    accuracy                           0.88      4858
   macro avg       0.77      0.71      0.73      4858
weighted avg       0.88      0.88      0.88      4858

Como citar: em breve

Downloads last month
17
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.