|
--- |
|
tags: |
|
- model_hub_mixin |
|
- pytorch_model_hub_mixin |
|
license: mit |
|
library_name: py-feat |
|
pipeline_tag: image-feature-extraction |
|
--- |
|
|
|
# FaceNet |
|
|
|
## Model Description |
|
facenet uses an Inception Residual Masking Network pretrained on VGGFace2 to classify facial identities. Facenet also exposes a 512 latent facial embedding space. |
|
|
|
## Model Details |
|
- **Model Type**: Convolutional Neural Network (CNN) |
|
- **Architecture**: Inception Residual masking network. Output layer classifies facial identities. Also provides a 512 dimensional representation layer |
|
- **Input Size**: 112 x 112 pixels |
|
- **Framework**: PyTorch |
|
|
|
## Model Sources |
|
- **Repository**: [GitHub Repository](https://github.com/timesler/facenet-pytorch/tree/master) |
|
- **Paper**: [FaceNet: A Unified Embedding for Face Recognition and Clustering](https://arxiv.org/abs/1503.03832) |
|
|
|
## Citation |
|
If you use this model in your research or application, please cite the following paper: |
|
|
|
F. Schroff, D. Kalenichenko, J. Philbin. FaceNet: A Unified Embedding for Face Recognition and Clustering, arXiv:1503.03832, 2015. |
|
|
|
``` |
|
@inproceedings{schroff2015facenet, |
|
title={Facenet: A unified embedding for face recognition and clustering}, |
|
author={Schroff, Florian and Kalenichenko, Dmitry and Philbin, James}, |
|
booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition}, |
|
pages={815--823}, |
|
year={2015} |
|
} |
|
``` |
|
|
|
## Acknowledgements |
|
We thank Tim Esler and David Sandberg for sharing their code and training weights with a permissive license. |
|
|
|
## Example Useage |
|
|
|
```python |
|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
from feat.identity_detectors.facenet.facenet_model import InceptionResnetV1 |
|
from huggingface_hub import hf_hub_download |
|
|
|
device = 'cpu' |
|
identity_detector = InceptionResnetV1( |
|
pretrained=None, |
|
classify=False, |
|
num_classes=None, |
|
dropout_prob=0.6, |
|
device=device, |
|
) |
|
identity_detector.logits = nn.Linear(512, 8631) |
|
identity_model_file = hf_hub_download(repo_id='py-feat/facenet', filename="facenet_20180402_114759_vggface2.pth") |
|
identity_detector.load_state_dict(torch.load(identity_model_file, map_location=device)) |
|
identity_detector.eval() |
|
identity_detector.to(device) |
|
|
|
# Test model |
|
face_image = "path/to/your/test_image.jpg" # Replace with your extracted face image that is [224, 224] |
|
|
|
# 512 dimensional Facial Embeddings |
|
identity_embeddings = identity_detector.forward(extracted_faces) |
|
|
|
``` |
|
|
|
|
|
|