|
--- |
|
library_name: py-feat |
|
pipeline_tag: image-feature-extraction |
|
tags: |
|
- model_hub_mixin |
|
- pytorch_model_hub_mixin |
|
license: cc-by-nc-4.0 |
|
--- |
|
|
|
# img2pose |
|
|
|
## Model Description |
|
img2pose uses Faster R-CNN to predict 6 Degree of Freedom Pose (DoF) for all faces in the photo. An interesting property of this model is that it can project the 3D face onto a 2D plane to also identify bounding boxes for each face. It does not require any other face detection model. |
|
|
|
## Model Details |
|
- **Model Type**: Convolutional Neural Network (CNN) |
|
- **Architecture**: Faster R-CNN |
|
- **Framework**: PyTorch |
|
|
|
## Model Sources |
|
- **Repository**: [GitHub Repository](https://github.com/vitoralbiero/img2pose) |
|
- **Paper**: [img2pose: Face Alignment and Detection via 6DoF, Face Pose Estimation](https://arxiv.org/abs/2012.07791) |
|
|
|
## Citation |
|
If you use this model in your research or application, please cite the following paper: |
|
|
|
Vítor Albiero, Xingyu Chen, Xi Yin, Guan Pang, Tal Hassner, "img2pose: Face Alignment and Detection via 6DoF, Face Pose Estimation," CVPR, 2021, arXiv:2012.07791 |
|
|
|
``` |
|
@inproceedings{albiero2021img2pose, |
|
title={img2pose: Face Alignment and Detection via 6DoF, Face Pose Estimation}, |
|
author={Albiero, Vítor and Chen, Xingyu and Yin, Xi and Pang, Guan and Hassner, Tal}, |
|
booktitle={CVPR}, |
|
year={2021}, |
|
url={https://arxiv.org/abs/2012.07791}, |
|
} |
|
``` |
|
|
|
## Acknowledgements |
|
We thank Albiero Vítor for sharing their code and training weights with a permissive license. |
|
|
|
## Example Useage |
|
|
|
```{python} |
|
import numpy as np |
|
import os |
|
import json |
|
import torch |
|
import torch.nn as nn |
|
from huggingface_hub import hf_hub_download |
|
from safetensors.torch import load_file |
|
from feat.facepose_detectors.img2pose.deps.models import FasterDoFRCNN, postprocess_img2pose |
|
from feat.utils.io import get_resource_path |
|
from torchvision.models.detection.backbone_utils import resnet_fpn_backbone |
|
|
|
|
|
# Load Model Configurations |
|
facepose_config_file = hf_hub_download(repo_id= "py-feat/img2pose", filename="config.json", cache_dir=get_resource_path()) |
|
with open(facepose_config_file, "r") as f: |
|
facepose_config = json.load(f) |
|
|
|
# Initialize img2pose |
|
device = 'cpu' |
|
backbone = resnet_fpn_backbone(backbone_name="resnet18", weights=None) |
|
backbone.eval() |
|
backbone.to(device) |
|
facepose_detector = FasterDoFRCNN(backbone=backbone, |
|
num_classes=2, |
|
min_size=facepose_config['min_size'], |
|
max_size=facepose_config['max_size'], |
|
pose_mean=torch.tensor(facepose_config['pose_mean']), |
|
pose_stddev=torch.tensor(facepose_config['pose_stddev']), |
|
threed_68_points=torch.tensor(facepose_config['threed_points']), |
|
rpn_pre_nms_top_n_test=facepose_config['rpn_pre_nms_top_n_test'], |
|
rpn_post_nms_top_n_test=facepose_config['rpn_post_nms_top_n_test'], |
|
bbox_x_factor=facepose_config['bbox_x_factor'], |
|
bbox_y_factor=facepose_config['bbox_y_factor'], |
|
expand_forehead=facepose_config['expand_forehead']) |
|
facepose_model_file = hf_hub_download(repo_id= "py-feat/img2pose", filename="model.safetensors", cache_dir=get_resource_path()) |
|
facepose_checkpoint = load_file(facepose_model_file) |
|
facepose_detector.load_state_dict(facepose_checkpoint) |
|
facepose_detector.eval() |
|
facepose_detector.to(device) |
|
|
|
# Test model |
|
face_image = "path/to/your/test_image.jpg" # Replace with your image |
|
|
|
img2pose_output = facepose_detector(face_image) |
|
|
|
# Postprocess |
|
img2pose_output = postprocess_img2pose(img2pose_output[0]) |
|
bbox = img2pose_output['boxes'] |
|
poses = img2pose_output['dofs'] |
|
facescores = img2pose_output['scores'] |
|
|
|
``` |