|
--- |
|
library_name: py-feat |
|
pipeline_tag: image-feature-extraction |
|
tags: |
|
- model_hub_mixin |
|
- pytorch_model_hub_mixin |
|
license: mit |
|
--- |
|
|
|
# ResMaskNet |
|
|
|
## Model Description |
|
resmasknet combines residual masking with unet architecture to predict 7 facial emotion categories from images. |
|
|
|
## Model Details |
|
- **Model Type**: Convolutional Neural Network (CNN) |
|
- **Architecture**: Residual masking network with u-network. Output layer classifies 7 emotion categories |
|
- **Input Size**: 224x224 pixels |
|
- **Framework**: PyTorch |
|
|
|
## Model Sources |
|
- **Repository**: [GitHub Repository](https://github.com/phamquiluan/ResidualMaskingNetwork) |
|
- **Paper**: [Facial Expression Recognition Using Residual Masking Network](https://ieeexplore.ieee.org/document/9411919) |
|
|
|
## Citation |
|
If you use the svm_au model in your research or application, please cite the following paper: |
|
|
|
Pham Luan, The Huynh Vu, and Tuan Anh Tran. "Facial Expression Recognition using Residual Masking Network". In: Proc. ICPR. 2020. |
|
|
|
``` |
|
@inproceedings{pham2021facial, |
|
title={Facial expression recognition using residual masking network}, |
|
author={Pham, Luan and Vu, The Huynh and Tran, Tuan Anh}, |
|
booktitle={2020 25th International Conference on Pattern Recognition (ICPR)}, |
|
pages={4513--4519}, |
|
year={2021}, |
|
organization={IEEE} |
|
} |
|
``` |
|
|
|
## Acknowledgements |
|
We thank Luan Pham for generously sharing this model with a permissive license. |
|
|
|
## Example Useage |
|
|
|
```python |
|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
from feat.emo_detectors.ResMaskNet.resmasknet_test import ResMasking |
|
from huggingface_hub import hf_hub_download |
|
|
|
# Load Configs |
|
emotion_config_file = hf_hub_download(repo_id= "py-feat/resmasknet", filename="config.json", cache_dir=get_resource_path()) |
|
with open(emotion_config_file, "r") as f: |
|
emotion_config = json.load(f) |
|
|
|
device = 'cpu' |
|
emotion_detector = ResMasking("", in_channels=emotion_config['in_channels']) |
|
emotion_detector.fc = nn.Sequential(nn.Dropout(0.4), nn.Linear(512, emotion_config['num_classes'])) |
|
emotion_model_file = hf_hub_download(repo_id='py-feat/resmasknet', filename="ResMaskNet_Z_resmasking_dropout1_rot30.pth") |
|
emotion_checkpoint = torch.load(emotion_model_file, map_location=device)["net"] |
|
emotion_detector.load_state_dict(emotion_checkpoint) |
|
emotion_detector.eval() |
|
emotion_detector.to(device) |
|
|
|
|
|
# Test model |
|
face_image = "path/to/your/test_image.jpg" # Replace with your extracted face image that is [224, 224] |
|
|
|
# Classification - [angry, disgust, fear, happy, sad, surprise, neutral] |
|
emotions = emotion_detector.forward(face_image) |
|
emotion_probabilities = torch.softmax(emotions, 1) |
|
|
|
``` |