|
"""RAdam Optimizer. |
|
Implementation lifted from: https://github.com/LiyuanLucasLiu/RAdam |
|
Paper: `On the Variance of the Adaptive Learning Rate and Beyond` - https://arxiv.org/abs/1908.03265 |
|
""" |
|
import math |
|
import torch |
|
from torch.optim.optimizer import Optimizer, required |
|
|
|
|
|
class RAdam(Optimizer): |
|
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0): |
|
defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay) |
|
self.buffer = [[None, None, None] for ind in range(10)] |
|
super(RAdam, self).__init__(params, defaults) |
|
|
|
def __setstate__(self, state): |
|
super(RAdam, self).__setstate__(state) |
|
|
|
def step(self, closure=None): |
|
|
|
loss = None |
|
if closure is not None: |
|
loss = closure() |
|
|
|
for group in self.param_groups: |
|
|
|
for p in group["params"]: |
|
if p.grad is None: |
|
continue |
|
grad = p.grad.data.float() |
|
if grad.is_sparse: |
|
raise RuntimeError("RAdam does not support sparse gradients") |
|
|
|
p_data_fp32 = p.data.float() |
|
|
|
state = self.state[p] |
|
|
|
if len(state) == 0: |
|
state["step"] = 0 |
|
state["exp_avg"] = torch.zeros_like(p_data_fp32) |
|
state["exp_avg_sq"] = torch.zeros_like(p_data_fp32) |
|
else: |
|
state["exp_avg"] = state["exp_avg"].type_as(p_data_fp32) |
|
state["exp_avg_sq"] = state["exp_avg_sq"].type_as(p_data_fp32) |
|
|
|
exp_avg, exp_avg_sq = state["exp_avg"], state["exp_avg_sq"] |
|
beta1, beta2 = group["betas"] |
|
|
|
exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad) |
|
exp_avg.mul_(beta1).add_(1 - beta1, grad) |
|
|
|
state["step"] += 1 |
|
buffered = self.buffer[int(state["step"] % 10)] |
|
if state["step"] == buffered[0]: |
|
N_sma, step_size = buffered[1], buffered[2] |
|
else: |
|
buffered[0] = state["step"] |
|
beta2_t = beta2 ** state["step"] |
|
N_sma_max = 2 / (1 - beta2) - 1 |
|
N_sma = N_sma_max - 2 * state["step"] * beta2_t / (1 - beta2_t) |
|
buffered[1] = N_sma |
|
|
|
|
|
if N_sma >= 5: |
|
step_size = ( |
|
group["lr"] |
|
* math.sqrt( |
|
(1 - beta2_t) |
|
* (N_sma - 4) |
|
/ (N_sma_max - 4) |
|
* (N_sma - 2) |
|
/ N_sma |
|
* N_sma_max |
|
/ (N_sma_max - 2) |
|
) |
|
/ (1 - beta1 ** state["step"]) |
|
) |
|
else: |
|
step_size = group["lr"] / (1 - beta1 ** state["step"]) |
|
buffered[2] = step_size |
|
|
|
if group["weight_decay"] != 0: |
|
p_data_fp32.add_(-group["weight_decay"] * group["lr"], p_data_fp32) |
|
|
|
|
|
if N_sma >= 5: |
|
denom = exp_avg_sq.sqrt().add_(group["eps"]) |
|
p_data_fp32.addcdiv_(-step_size, exp_avg, denom) |
|
else: |
|
p_data_fp32.add_(-step_size, exp_avg) |
|
|
|
p.data.copy_(p_data_fp32) |
|
|
|
return loss |
|
|
|
|
|
class PlainRAdam(Optimizer): |
|
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0): |
|
defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay) |
|
|
|
super(PlainRAdam, self).__init__(params, defaults) |
|
|
|
def __setstate__(self, state): |
|
super(PlainRAdam, self).__setstate__(state) |
|
|
|
def step(self, closure=None): |
|
|
|
loss = None |
|
if closure is not None: |
|
loss = closure() |
|
|
|
for group in self.param_groups: |
|
|
|
for p in group["params"]: |
|
if p.grad is None: |
|
continue |
|
grad = p.grad.data.float() |
|
if grad.is_sparse: |
|
raise RuntimeError("RAdam does not support sparse gradients") |
|
|
|
p_data_fp32 = p.data.float() |
|
|
|
state = self.state[p] |
|
|
|
if len(state) == 0: |
|
state["step"] = 0 |
|
state["exp_avg"] = torch.zeros_like(p_data_fp32) |
|
state["exp_avg_sq"] = torch.zeros_like(p_data_fp32) |
|
else: |
|
state["exp_avg"] = state["exp_avg"].type_as(p_data_fp32) |
|
state["exp_avg_sq"] = state["exp_avg_sq"].type_as(p_data_fp32) |
|
|
|
exp_avg, exp_avg_sq = state["exp_avg"], state["exp_avg_sq"] |
|
beta1, beta2 = group["betas"] |
|
|
|
exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad) |
|
exp_avg.mul_(beta1).add_(1 - beta1, grad) |
|
|
|
state["step"] += 1 |
|
beta2_t = beta2 ** state["step"] |
|
N_sma_max = 2 / (1 - beta2) - 1 |
|
N_sma = N_sma_max - 2 * state["step"] * beta2_t / (1 - beta2_t) |
|
|
|
if group["weight_decay"] != 0: |
|
p_data_fp32.add_(-group["weight_decay"] * group["lr"], p_data_fp32) |
|
|
|
|
|
if N_sma >= 5: |
|
step_size = ( |
|
group["lr"] |
|
* math.sqrt( |
|
(1 - beta2_t) |
|
* (N_sma - 4) |
|
/ (N_sma_max - 4) |
|
* (N_sma - 2) |
|
/ N_sma |
|
* N_sma_max |
|
/ (N_sma_max - 2) |
|
) |
|
/ (1 - beta1 ** state["step"]) |
|
) |
|
denom = exp_avg_sq.sqrt().add_(group["eps"]) |
|
p_data_fp32.addcdiv_(-step_size, exp_avg, denom) |
|
else: |
|
step_size = group["lr"] / (1 - beta1 ** state["step"]) |
|
p_data_fp32.add_(-step_size, exp_avg) |
|
|
|
p.data.copy_(p_data_fp32) |
|
|
|
return loss |
|
|