|
import torch |
|
from torch import nn |
|
from torch.nn import functional as F |
|
from typing import Type |
|
|
|
class LoRALinear(nn.Linear): |
|
def __init__(self, in_features: int, out_features: int, bias: bool = True, device=None, dtype=None, r=4, scale=1) -> None: |
|
super().__init__(in_features, out_features, bias, device, dtype) |
|
self.r = r |
|
self.trainable_lora_down = nn.Linear(in_features, r, bias=False) |
|
self.dropout = nn.Dropout(0.1) |
|
self.trainable_lora_up = nn.Linear(r, out_features, bias=False) |
|
self.scale = scale |
|
self.selector = nn.Identity() |
|
|
|
nn.init.normal_(self.trainable_lora_down.weight, std=1/r) |
|
nn.init.zeros_(self.trainable_lora_up.weight) |
|
|
|
def forward(self, input): |
|
out = F.linear(input, self.weight, self.bias) + self.scale*self.dropout(self.trainable_lora_up(self.selector(self.trainable_lora_down(input)))) |
|
return out,0 |
|
|
|
class LoRAConv2D(nn.Conv2d): |
|
def __init__(self, in_channels: int, out_channels: int, kernel_size, stride = 1, padding = 0, dilation = 1, groups = 1, bias = True, padding_mode: str = 'zeros', device=None, dtype=None, r=4, scale=1) -> None: |
|
super().__init__(in_channels, out_channels, kernel_size, stride, padding, dilation, groups, bias, padding_mode, device, dtype) |
|
assert type(kernel_size) is int |
|
self.r = r |
|
self.scale = scale |
|
|
|
self.trainable_lora_down = nn.Conv2d( |
|
in_channels = in_channels, |
|
out_channels = r, |
|
kernel_size = kernel_size, |
|
bias=False |
|
) |
|
|
|
self.dropout = nn.Dropout(0.1) |
|
|
|
self.trainable_lora_up = nn.Conv2d( |
|
in_channels=r, |
|
out_channels=out_channels, |
|
kernel_size=1, |
|
bias=False |
|
) |
|
self.selector = nn.Identity() |
|
self.scale = scale |
|
|
|
nn.init.normal_(self.trainable_lora_down.weight, std=1/r) |
|
nn.init.zeros_(self.trainable_lora_up.weight) |
|
|
|
def forward(self, input): |
|
out = F.conv2d(input, self.weight, self.bias, self.stride) |
|
out = out + self.scale*self.dropout(self.trainable_lora_up(self.selector(self.trainable_lora_down(input)))) |
|
return out,0 |
|
|
|
|
|
|