Uploaded model
- Developed by: qcube
- License: apache-2.0
- Finetuned from model : llm-jp/llm-jp-3-13b
This llama model was trained 2x faster with Unsloth and Huggingface's TRL library.
Sample use
以下は、elyza-tasks-100-TV_0.jsonl の回答のためのコードです。
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
BitsAndBytesConfig,
)
import torch
from tqdm import tqdm
import json
HF_TOKEN = "your-token"
model_name = "qcube/llm-jp-3-13b-finetune3"
# QLoRA config
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_use_double_quant=False,
)
# Load model
model = AutoModelForCausalLM.from_pretrained(
model_name,
quantization_config=bnb_config,
device_map="auto",
token=HF_TOKEN,
)
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(
model_name,
trust_remote_code=True,
token=HF_TOKEN,
)
# データセットの読み込み。
# omnicampusの開発環境では、左にタスクのjsonlをドラッグアンドドロップしてから実行。
datasets = []
with open("./elyza-tasks-100-TV_0.jsonl", "r") as f:
item = ""
for line in f:
line = line.strip()
item += line
if item.endswith("}"):
datasets.append(json.loads(item))
item = ""
# llmjp
results = []
for data in tqdm(datasets):
input = data["input"]
prompt = f"""### 指示
{input}
### 回答:
"""
tokenized_input = tokenizer.encode(
prompt, add_special_tokens=False, return_tensors="pt"
).to(model.device)
with torch.no_grad():
outputs = model.generate(
tokenized_input, max_new_tokens=100, do_sample=False, repetition_penalty=1.2
)[0]
output = tokenizer.decode(
outputs[tokenized_input.size(1) :], skip_special_tokens=True
)
results.append({"task_id": data["task_id"], "input": input, "output": output})
import re
model_name = re.sub(".*/", "", model_name)
with open(f"./{model_name}-outputs.jsonl", "w", encoding="utf-8") as f:
for result in results:
json.dump(
result, f, ensure_ascii=False
) # ensure_ascii=False for handling non-ASCII characters
f.write("\n")
Model tree for qcube/llm-jp-3-13b-finetune3
Base model
llm-jp/llm-jp-3-13b