Model Card for Qwen2-0.5B-NashMD

This model is a fine-tuned version of Qwen/Qwen2-0.5B-Instruct. It has been trained using TRL.

Quick start

from transformers import pipeline

question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="qgallouedec/Qwen2-0.5B-NashMD", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])

Training procedure

Visualize in Weights & Biases

This model was trained with Nash-MD, a method introduced in Nash Learning from Human Feedback.

Framework versions

  • TRL: 0.12.0.dev0
  • Transformers: 4.46.0.dev0
  • Pytorch: 2.4.1
  • Datasets: 3.0.2
  • Tokenizers: 0.20.0

Citations

Cite Nash-MD as:

@inproceedings{munos2024nash,
    title        = {Nash Learning from Human Feedback},
    author       = {R{'{e}}mi Munos and Michal Valko and Daniele Calandriello and Mohammad Gheshlaghi Azar and Mark Rowland and Zhaohan Daniel Guo and Yunhao Tang and Matthieu Geist and Thomas Mesnard and C{\^{o}}me Fiegel and Andrea Michi and Marco Selvi and Sertan Girgin and Nikola Momchev and Olivier Bachem and Daniel J. Mankowitz and Doina Precup and Bilal Piot},
    year         = 2024,
    booktitle    = {Forty-first International Conference on Machine Learning, {ICML} 2024, Vienna, Austria, July 21-27, 2024},
    publisher    = {OpenReview.net},
    url          = {https://openreview.net/forum?id=Y5AmNYiyCQ}
}

Cite TRL as:

@misc{vonwerra2022trl,
    title        = {{TRL: Transformer Reinforcement Learning}},
    author       = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
    year         = 2020,
    journal      = {GitHub repository},
    publisher    = {GitHub},
    howpublished = {\url{https://github.com/huggingface/trl}}
}
Downloads last month
11
Safetensors
Model size
494M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for qgallouedec/Qwen2-0.5B-NashMD

Base model

Qwen/Qwen2-0.5B
Finetuned
(56)
this model