Quentin Gallouédec
Initial commit
ac61bac
{
"policy_class": {
":type:": "<class 'abc.ABCMeta'>",
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
"__module__": "stable_baselines3.common.policies",
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
"__init__": "<function ActorCriticPolicy.__init__ at 0x7ffa4ded3ee0>",
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ffa4ded3f70>",
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ffa4ded5040>",
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ffa4ded50d0>",
"_build": "<function ActorCriticPolicy._build at 0x7ffa4ded5160>",
"forward": "<function ActorCriticPolicy.forward at 0x7ffa4ded51f0>",
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7ffa4ded5280>",
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ffa4ded5310>",
"_predict": "<function ActorCriticPolicy._predict at 0x7ffa4ded53a0>",
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ffa4ded5430>",
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ffa4ded54c0>",
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7ffa4ded5550>",
"__abstractmethods__": "frozenset()",
"_abc_impl": "<_abc._abc_data object at 0x7ffa4ded4780>"
},
"verbose": 1,
"policy_kwargs": {},
"observation_space": {
":type:": "<class 'gym.spaces.box.Box'>",
":serialized:": "gAWV3wEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWQAAAAAAAAAAAAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/lGgKSwiFlIwBQ5R0lFKUjARoaWdolGgSKJZAAAAAAAAAAAAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H+UaApLCIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYIAAAAAAAAAAAAAAAAAAAAlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwiFlGgVdJRSlIwNYm91bmRlZF9hYm92ZZRoEiiWCAAAAAAAAAAAAAAAAAAAAJRoIUsIhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
"dtype": "float64",
"_shape": [
8
],
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
"high": "[inf inf inf inf inf inf inf inf]",
"bounded_below": "[False False False False False False False False]",
"bounded_above": "[False False False False False False False False]",
"_np_random": null
},
"action_space": {
":type:": "<class 'gym.spaces.box.Box'>",
":serialized:": "gAWVDgwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLAoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAAAAIC/AACAv5RoCksChZSMAUOUdJRSlIwEaGlnaJRoEiiWCAAAAAAAAAAAAIA/AACAP5RoCksChZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolgIAAAAAAAAAAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLAoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYCAAAAAAAAAAEBlGghSwKFlGgVdJRSlIwKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lGgtjBRfX2JpdF9nZW5lcmF0b3JfY3RvcpSTlIaUUpR9lCiMDWJpdF9nZW5lcmF0b3KUjAdNVDE5OTM3lIwFc3RhdGWUfZQojANrZXmUaBIolsAJAAAAAAAAAAAAgFPCs5yHA7WTcuyrW+jmsvLPtoHa1QbvYaExTaBrtczZE+YYn3SceS/IpRuAxHkBSZ4PQ+Rd4BiTkhNVzNRKKWTSCJW+NNCeRHJ6A/Ctvwpzm3s+6WCxBtp1A0ULbn3WFmrrBDRmg7fz9aUvae9CY0O1XPfCd1LMRkQ3LQiJbtCOrnf7GLaAT3ue+U8y7BLYuY5ehakZyq49di1nK0KAnsXuxx/1IgFdS88kD8wZUmREV5hwnQr1Ehe16VreO8T/Qc86sV+2h90z2FiJqqLNf3s/yZS3bA9DHzGZfRtgkKu3Bx0ZTN7I+466APXPqRreJf4gBqUW/NB248FO9cpD0wFaed9QV63NqpiFOs/RYeEwD8e32dZFRfi9SK5aLvuApJMu2LOfZweypHIkyPjeY5W+tsm2bdPmVoCAOiyi73cf5k0LQeJNWqZU/wuy/f8myghZ9qrjf+2JSJMaB9VNMXWmxuq4Dq0fkhzJr1ML7SgftfSG29O5koFUMozQL58gAzyX96ZMcpWbZ+3/zlaVhGln5egXC8MtIK6xIFCvh/vD/F1jLgYIp14MM597MuPmTpa+OaKek7bql9Cp8/0skhg5QSCvCaijm8wenxrfqLyRxDPCpS+L3isJC5LrjFgWnsdxQXVrJK8uaobJcTIJ5NrYYfA2l5gH27iPI9EqhzFtZJXiE4vXpH18f3kouYV9RowPzOtmYsbmstR/Mx/VY7E0XBmnMidL4dYTUXgxaDbFxWy3y6miL2yw0I2O09vPWV7LqbwMbthlU26lrLfnJDz88B+7y4pFCwvsHgCsMWq6pvroAF4Ms+++JnhzrL0GLrtfJ7667p42Vg78GirmKIRMFH0p6aLRPV4V/fclE3PLBj0InU315M5v7fDFj/IreJeFUhIAy5/BlvLdgwIfBMBWvyjhqGRBo2KmdiDAO9BPhdi6oGmZUCxTDjUyMd8rjeRdntTE+L9sHQUSvUfpRjKcSIjZXcjsMMSwwU0QzIXewD4nZg8EAZ72iHnChWveW7cB5EQRFE+YPvvyNAw4OvORF+DjDtmLUz6jNz0JbkuKbhIQEEVbpDRkoeIGA4HATymZeE4TX/hvhOxJfX5liXD9/Uon8OjJ/hhIrDNUYR2NOV2R1L+VuK/JA9o0izGPiCC9vi7UK1u4re8tvPrBInC6BH2DpMvWSRepdH0frFxGsH/kRB/S77USeMs38a+yorDaa9Wsb9WnuQg10vl087jhvwSZx77fGq52NV1h/UnZAjnqJOjCPBgQrY0wsSeSW6SOSdItAOupiWkVvSzHz+gopd/3FUUPbjdik7Vd6O6ycGOFwp4+wyZqq1MKHww5exJND6De8NB4fGBzsvKoT8O1fAC3Y2Z+3mLYwkCJXULx2zNSO90bQi0L0BhTF1AidNtqRkak72V+V1kos6m4F+kyZiOiwxfcHKWHmpQe3A8HpX6nacx0Zso0WyF/W/sOLo//2g0YD9koIjgKvw//f9Em4CvxNBUMnJYTVQJGysF4QMShnM6byaMNJhRVALf+X0+SgLJkEwLfKdBbKxjA035OEc2YKmUpvooVUUt+9U8d7cKRgNYKKPwCHyYfLJSQt4ZEdThgjeywDxgsGzPax5SklOLroSYn39feofatZDzJXevfPTHyi1ZLwpe6Hwkbqz1FuOnHiShPedbEA9b/HCtBytSZrgUwlwHpQlAiBTSxpN7TFzVZrrhRd6N8W+FeE9SAGCHwXchFR4SCGThPyRGO/XWkMPJ42BLUOmMGepDQgWH646tjoJSE3EXcA5iDS+Nq6Oh521oC2UPAnvxIj1QbVh8IbxlBytRTTjc0c14E9cyhIPlgIoHriuEFSMXSEzOGL1MmL6UCbiXfsRg9Z6OwWCCl3VeGg5bEZ1kjJkvs08k7wtPk4ATAjaTL3QoY2gf106zFbJtL4D5gmLMJ9OuzE2Fn5uaAqqpjXIqqEXxS9jtpsRU9VTHCg68RwXQVIUhuVJgHq8fOigBMrW7Am5+jjo/GNNlcFcp813dFiXy4qHhjGSEjNXp3ln03NZkOgqXQ8SalJlPOvyrAS9wW9EtjQKhcrBSWSsQ8C3o/Mc/sR/CMRB85ZIojR/tiCKtOutxQMIusIOnYHK8g6kPpTQ8J/PfJ8pa3GEoYoA67axQTXsysd2Y6ZDwpz1HkAeISVK2AlCcuQssrQv8dVLAcins/2kjRFp5Vp82HSX9j6Ci9GH5mkdyqV84vWsdwRz4JNXHZoHVZKnrxSdA1HUwRUI/5oWiqnGk9KyiS4Mv9dQIVluJ1+/pAHYEdG9YgLHiNE2zA7aIQbqqlGX6jH1CrHSPL9mnlHdPiKjozwRXu02UQuzlGJn+/PUkU6cPYLLeLc8e7S2qfCZxbdpHioand7wYKqb5bMb8dA3Dwvm6P6iJXSogJ+Q+0z43li8ydYJqZNZlSjsljr/2c5UU33vMhLDLEXIHT8WzrsS45TsKNbhYfTYx6Ds/8W5yOtiOPWc0+fRlAjbQC++FKo5UaMl2eRCxI4U5/heX2HxJGNk50rICjuFsG/8Q+NUuJgS+y3FMhe+sm1e2MdC+ldkBqEn8oRxajECbP4Wizz1tfJliW/1A5fdGTfUxM3HV72bJgnqswmoAumAx6d36KfuZwEEp0/wcrdo+8/unJ5f2mYeqCrOcaxDJrs6SxW1zVaH/YTZl+RNA0NjPLgaqnlveaes/MkpzsVEQDtvKGFrG1cnmGjZVi2azrSDGQ0Y423nEksDC5awYcOJmVYbeA4DkMSNfj+7Dx2SzH/PVPuXLX9aw9K9QF4Ml48zsSrwsVjIa8+gIdffs2pf2wCKcPtFez6vOT0UDuFHknJjMDg0fI3DnyC7jJqO8V4XpmPyarTp3JJRGhmqTHhpZInn70JMfS+RFry5+rLSOM0T+KWV8fYjs9eyCiZijlR4AiADooXm9G8JIzZCLZX2Dty83iyz7gQzSxYO7ULuTT1stvGuJwbBP4LMhLXkbxdhAmBSDiYNOnc3O+yFsO6Ps9UOQD8S4Pbr8hZ4mFjbicpO635SwpmHINYDeuewln3/GHz69LpCjmpnKPeF9ZxXcq6MR4kJUV2j/dQzqjLniNaQmrMkULdI7W1sMXRFcsz9xs1GVwVqmtMVws8HtvXMYNmosCrrgAFX2ghPz7dXCV6vML5YhfNbDAzzG6MHffrslrhMav3vtlt8Fnld4VaH6IhMkowayT1lSVvfvlKHCWwtKaTcOZrR5LZGalJOpFbVIFUOAo+LnY/25bmc3KloyLzgiTudjPsXEGPNPBIvE/5cMEvU4Lrs0N3tCke4abYDXF9f14QrwLlGgHjAJ1NJSJiIeUUpQoSwNoC05OTkr/////Sv////9LAHSUYk1wAoWUaBV0lFKUjANwb3OUTXACdYwJaGFzX2dhdXNzlEsAjAVnYXVzc5RHAAAAAAAAAAB1YnViLg==",
"dtype": "float32",
"_shape": [
2
],
"low": "[-1. -1.]",
"high": "[1. 1.]",
"bounded_below": "[ True True]",
"bounded_above": "[ True True]",
"_np_random": "RandomState(MT19937)"
},
"n_envs": 1,
"num_timesteps": 1001472,
"_total_timesteps": 1000000,
"_num_timesteps_at_start": 0,
"seed": 0,
"action_noise": null,
"start_time": 1676718732928296993,
"learning_rate": {
":type:": "<class 'function'>",
":serialized:": "gAWVdwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB59lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
},
"tensorboard_log": "runs/Swimmer-v3__trpo__1721833506__1676718729/Swimmer-v3",
"lr_schedule": {
":type:": "<class 'function'>",
":serialized:": "gAWVdwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB59lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
},
"_last_obs": null,
"_last_episode_starts": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVdQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYCAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksChZSMAUOUdJRSlC4="
},
"_last_original_obs": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWV9QAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAAAAAAAAAAKRA3w7k0Le/hIQI0VLRoD8MnudAnfeUvzdlMzPPcKm/JMgwTh47rj+tAgo2JA6qv1Tn5PQnDaK/RL2g1tYauL/3MAmRBQWsv1rc54cRH7Y/ROhaW7s2tL/A0G2oo4NaP/QnRKf8/pY/jizzN8r5sj90OIggcC2zP3gIVAXy97E/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksCSwiGlIwBQ5R0lFKULg=="
},
"_episode_num": 0,
"use_sde": false,
"sde_sample_freq": -1,
"_current_progress_remaining": -0.0014719999999999178,
"ep_info_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIMEs7NVfGdkCUhpRSlIwBbJRN6AOMAXSUR0CdBgVR1oxpdX2UKGgGaAloD0MIs3kcBnOVdkCUhpRSlGgVTegDaBZHQJ0F/wqiGnJ1fZQoaAZoCWgPQwiLic3HNb92QJSGlFKUaBVN6ANoFkdAnRSyjQAuI3V9lChoBmgJaA9DCFyv6UGBnXZAlIaUUpRoFU3oA2gWR0CdFKxCY1HfdX2UKGgGaAloD0MIwK+RJIi5dkCUhpRSlGgVTegDaBZHQJ0kLwb2lEZ1fZQoaAZoCWgPQwjYmxiSU6Z2QJSGlFKUaBVN6ANoFkdAnSQovi97GHV9lChoBmgJaA9DCMU7wJNWmnZAlIaUUpRoFU3oA2gWR0CdM7tyPuG9dX2UKGgGaAloD0MIIqrwZziydkCUhpRSlGgVTegDaBZHQJ0ztS4vvjR1fZQoaAZoCWgPQwhW9fI7zYB2QJSGlFKUaBVN6ANoFkdAnUFnTy8SPHV9lChoBmgJaA9DCLd7uU8Oq3ZAlIaUUpRoFU3oA2gWR0CdQWEG7jDLdX2UKGgGaAloD0MIXeLIAxGFdkCUhpRSlGgVTegDaBZHQJ1P9DKHO8l1fZQoaAZoCWgPQwj8q8d967t2QJSGlFKUaBVN6ANoFkdAnU/t7F85S3V9lChoBmgJaA9DCJ5g/3XuhnZAlIaUUpRoFU3oA2gWR0CdXzO6unuRdX2UKGgGaAloD0MIa2EW2vmhdkCUhpRSlGgVTegDaBZHQJ1fLX6InBt1fZQoaAZoCWgPQwheMLjmTr92QJSGlFKUaBVN6ANoFkdAnW3bSRbKR3V9lChoBmgJaA9DCLt+wW5YnHZAlIaUUpRoFU3oA2gWR0CdbdUDMeOodX2UKGgGaAloD0MILzatFEKkdkCUhpRSlGgVTegDaBZHQJ161N+LFXJ1fZQoaAZoCWgPQwjt8NdkjXd2QJSGlFKUaBVN6ANoFkdAnXrOmixmkHV9lChoBmgJaA9DCK/sgsG1o3ZAlIaUUpRoFU3oA2gWR0CdiONA1NxmdX2UKGgGaAloD0MIR+hn6vWDdkCUhpRSlGgVTegDaBZHQJ2I3Pomoit1fZQoaAZoCWgPQwjE0OrkDKl2QJSGlFKUaBVN6ANoFkdAnZfSE6DGtXV9lChoBmgJaA9DCC5yT1c3fXZAlIaUUpRoFU3oA2gWR0Cdl8vIOpbVdX2UKGgGaAloD0MIkZighi+RdkCUhpRSlGgVTegDaBZHQJ2nady1eBx1fZQoaAZoCWgPQwh3n+OjhY92QJSGlFKUaBVN6ANoFkdAnadj1f3N93V9lChoBmgJaA9DCLqe6LrwjnZAlIaUUpRoFU3oA2gWR0Cd0Wmz0HyFdX2UKGgGaAloD0MIjfFh9rJ7dkCUhpRSlGgVTegDaBZHQJ3RY2qDK5l1fZQoaAZoCWgPQwjxZaIIaXZ2QJSGlFKUaBVN6ANoFkdAneEwJgLJCHV9lChoBmgJaA9DCE8iwr/Ir3ZAlIaUUpRoFU3oA2gWR0Cd4SnfVI7OdX2UKGgGaAloD0MI6rKY2PyBdkCUhpRSlGgVTegDaBZHQJ3v1p/PPcB1fZQoaAZoCWgPQwgPCd/72412QJSGlFKUaBVN6ANoFkdAne/QWBSUDHV9lChoBmgJaA9DCLZoAdpWYHZAlIaUUpRoFU3oA2gWR0Cd/ZvBacI7dX2UKGgGaAloD0MI2spL/ududkCUhpRSlGgVTegDaBZHQJ39lX2dupF1fZQoaAZoCWgPQwjTFtf4TGx2QJSGlFKUaBVN6ANoFkdAngrOs90RvnV9lChoBmgJaA9DCMueBDYnwHZAlIaUUpRoFU3oA2gWR0CeCshpxm03dX2UKGgGaAloD0MI1sVtNMB5dkCUhpRSlGgVTegDaBZHQJ4aMPmPo3d1fZQoaAZoCWgPQwjMtWgBGpd2QJSGlFKUaBVN6ANoFkdAnhoqtga3qnV9lChoBmgJaA9DCLN6h9vho3ZAlIaUUpRoFU3oA2gWR0CeKOMxXXAedX2UKGgGaAloD0MIvMlv0UlWdkCUhpRSlGgVTegDaBZHQJ4o3Ov+wTx1fZQoaAZoCWgPQwgOSphpe7J2QJSGlFKUaBVN6ANoFkdAnjI2gOBlMHV9lChoBmgJaA9DCERSCyWTX3ZAlIaUUpRoFU3oA2gWR0CeMjA2hqTKdX2UKGgGaAloD0MIYymSrwScdkCUhpRSlGgVTegDaBZHQJ5AgzUI9kl1fZQoaAZoCWgPQwijlBCsqqB2QJSGlFKUaBVN6ANoFkdAnkB87IT4+XV9lChoBmgJaA9DCI0Mchehk3ZAlIaUUpRoFU3oA2gWR0CeTf+tKZlWdX2UKGgGaAloD0MIPNo4Ym2VdkCUhpRSlGgVTegDaBZHQJ5N+WNWEK51fZQoaAZoCWgPQwisrdhfdq12QJSGlFKUaBVN6ANoFkdAnlzPfO2RaHV9lChoBmgJaA9DCEbOwp42lnZAlIaUUpRoFU3oA2gWR0CeXMk2P1cudX2UKGgGaAloD0MIknajj7midkCUhpRSlGgVTegDaBZHQJ5sJRXOnl51fZQoaAZoCWgPQwh7Lei98V92QJSGlFKUaBVN6ANoFkdAnmwe0b961XV9lChoBmgJaA9DCGNCzCUVjHZAlIaUUpRoFU3oA2gWR0Ceezrmhdt3dX2UKGgGaAloD0MIEeSghNmrdkCUhpRSlGgVTegDaBZHQJ57NKDkELZ1fZQoaAZoCWgPQwgMBWwHY5p2QJSGlFKUaBVN6ANoFkdAnqTnuE25x3V9lChoBmgJaA9DCGSV0jO9f3ZAlIaUUpRoFU3oA2gWR0CepOFvAGjcdX2UKGgGaAloD0MI5IOezeqadkCUhpRSlGgVTegDaBZHQJ60bNcGC7N1fZQoaAZoCWgPQwhU4GQbeNB2QJSGlFKUaBVN6ANoFkdAnrRmixmkFnV9lChoBmgJaA9DCM1y2ehcqXZAlIaUUpRoFU3oA2gWR0Cew8ovi97GdX2UKGgGaAloD0MI58WJr/aadkCUhpRSlGgVTegDaBZHQJ7Dw+Y+jdp1fZQoaAZoCWgPQwgVqMXgYbB2QJSGlFKUaBVN6ANoFkdAntI8aCL/CXV9lChoBmgJaA9DCNAKDFldl3ZAlIaUUpRoFU3oA2gWR0Ce0jYcebNKdX2UKGgGaAloD0MITraBO5CMdkCUhpRSlGgVTegDaBZHQJ7g0qZtvXN1fZQoaAZoCWgPQwhGC9C2Gpx2QJSGlFKUaBVN6ANoFkdAnuDMXaakRHV9lChoBmgJaA9DCGDoEaOnf3ZAlIaUUpRoFU3oA2gWR0Ce7olCkXUIdX2UKGgGaAloD0MIjup0IOtodkCUhpRSlGgVTegDaBZHQJ7ugvg3tKJ1fZQoaAZoCWgPQwi6ZvLNtqV2QJSGlFKUaBVN6ANoFkdAnv1Irz5GjXV9lChoBmgJaA9DCAYq49/nsHZAlIaUUpRoFU3oA2gWR0Ce/UJp35erdX2UKGgGaAloD0MIVpv/Vx1/dkCUhpRSlGgVTegDaBZHQJ8MqpyZKFt1fZQoaAZoCWgPQwijrUoi+5x2QJSGlFKUaBVN6ANoFkdAnwykUTL4e3V9lChoBmgJaA9DCOPHmLvWq3ZAlIaUUpRoFU3oA2gWR0CfG6C9AX2vdX2UKGgGaAloD0MI58dfWlSUdkCUhpRSlGgVTegDaBZHQJ8bmnJkoWp1fZQoaAZoCWgPQwifWn11VbF2QJSGlFKUaBVN6ANoFkdAnygXlCCz1XV9lChoBmgJaA9DCDc10HxOvXZAlIaUUpRoFU3oA2gWR0CfKBFN+LFXdX2UKGgGaAloD0MImfG20uuddkCUhpRSlGgVTegDaBZHQJ83X0/W1+l1fZQoaAZoCWgPQwgDCvX0kbR2QJSGlFKUaBVN6ANoFkdAnzdZBHCoCXV9lChoBmgJaA9DCF36l6QypHZAlIaUUpRoFU3oA2gWR0CfRjUtqYZ3dX2UKGgGaAloD0MII2dhTzu4dkCUhpRSlGgVTegDaBZHQJ9GLuZ1FH91fZQoaAZoCWgPQwgUBmUazbp2QJSGlFKUaBVN6ANoFkdAn2/0HUtqYnV9lChoBmgJaA9DCI83+S06rXZAlIaUUpRoFU3oA2gWR0Cfb+3T/hl2dX2UKGgGaAloD0MIiQj/IqiQdkCUhpRSlGgVTegDaBZHQJ9+9RFZxJd1fZQoaAZoCWgPQwh1dcdiG8R2QJSGlFKUaBVN6ANoFkdAn37ux8lXzXV9lChoBmgJaA9DCM7drpcmp3ZAlIaUUpRoFU3oA2gWR0CfjutCRfWudX2UKGgGaAloD0MIQiRDjm2YdkCUhpRSlGgVTegDaBZHQJ+O5PtUn5V1fZQoaAZoCWgPQwjyRBDnIYV2QJSGlFKUaBVN6ANoFkdAn52SuMdcS3V9lChoBmgJaA9DCNJwytw8enZAlIaUUpRoFU3oA2gWR0CfnYxwQ176dX2UKGgGaAloD0MIL8GpDyRhdkCUhpRSlGgVTegDaBZHQJ+sNTR6WxB1fZQoaAZoCWgPQwgxRE5fz5Z2QJSGlFKUaBVN6ANoFkdAn6wu6mO2iXV9lChoBmgJaA9DCMGPatjvinZAlIaUUpRoFU3oA2gWR0Cfur5KODJ2dX2UKGgGaAloD0MIKej2koaadkCUhpRSlGgVTegDaBZHQJ+6uAFxGUh1fZQoaAZoCWgPQwhBR6takpJ2QJSGlFKUaBVN6ANoFkdAn8n6bSZ0CHV9lChoBmgJaA9DCIFc4siDo3ZAlIaUUpRoFU3oA2gWR0CfyfQmeDnOdX2UKGgGaAloD0MIKdAn8iSQdkCUhpRSlGgVTegDaBZHQJ/Y73j+7191fZQoaAZoCWgPQwjcLjTX6a52QJSGlFKUaBVN6ANoFkdAn9jpNGmUGHV9lChoBmgJaA9DCPcEie3uf3ZAlIaUUpRoFU3oA2gWR0Cf52iTdLxqdX2UKGgGaAloD0MIhuP5DCirdkCUhpRSlGgVTegDaBZHQJ/nYkleF+N1fZQoaAZoCWgPQwil9bcEIIB2QJSGlFKUaBVN6ANoFkdAn/XHa8Hv+nV9lChoBmgJaA9DCAOy17t/lnZAlIaUUpRoFU3oA2gWR0Cf9cEl3QlbdX2UKGgGaAloD0MIgzXOpiObdkCUhpRSlGgVTegDaBZHQKABjyhBZ6l1fZQoaAZoCWgPQwjspSkCnKN2QJSGlFKUaBVN6ANoFkdAoAGMBfa6BnV9lChoBmgJaA9DCJ3y6EbYr3ZAlIaUUpRoFU3oA2gWR0CgCMxA0KqodX2UKGgGaAloD0MIQ5Hu51SldkCUhpRSlGgVTegDaBZHQKAIyR3/xUh1fZQoaAZoCWgPQwiXWBmN/Ix2QJSGlFKUaBVN6ANoFkdAoA/1KXfIjnV9lChoBmgJaA9DCIasbvXcl3ZAlIaUUpRoFU3oA2gWR0CgD/IFvAGjdWUu"
},
"ep_success_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
},
"_n_updates": 489,
"n_steps": 1024,
"gamma": 0.9999,
"gae_lambda": 0.95,
"ent_coef": 0.0,
"vf_coef": 0.0,
"max_grad_norm": 0.0,
"normalize_advantage": true,
"batch_size": 128,
"cg_max_steps": 25,
"cg_damping": 0.1,
"line_search_shrinking_factor": 0.8,
"line_search_max_iter": 10,
"target_kl": 0.01,
"n_critic_updates": 20,
"sub_sampling_factor": 1
}